Chọn phương án đúng trong mỗi câu sau:
Câu 1
Trả lời Câu 1 trang 112 Vở thực hành Toán 9
Cho đường thẳng a và một điểm O cách a một khoảng bằng 6cm. Khẳng định nào sau đây là đúng về vị trí tương đối của đường thẳng a và đường tròn (O; 9cm)?
A. Đường thẳng a cắt đường tròn (O) tại hai điểm.
B. Đường thẳng a tiếp xúc với đường tròn (O).
C. Đường thẳng a và đường tròn (O) không có điểm chung.
D. Đường thẳng a và đường tròn (O) có duy nhất điểm chung.
Phương pháp giải:
Cho đường thẳng a và đường tròn (O; R). Gọi d là khoảng cách từ O đến a. Khi đó:
+ Đường thẳng a và đường tròn (O; R) cắt nhau khi \(d < R\).
+ Đường thẳng a và đường tròn (O; R) tiếp xúc với nhau khi \(d = R\).
+ Đường thẳng a và đường tròn (O; R) không giao nhau khi \(d > R\).
Lời giải chi tiết:
Vì \(6cm < 9cm\) nên đường thẳng a cắt đường tròn (O) tại hai điểm.
Chọn A
Câu 2
Trả lời Câu 2 trang 112 Vở thực hành Toán 9
Cho một điểm M nằm ngoài đường tròn (I; 6cm), vẽ tiếp tuyến MB đến đường tròn đó (B là tiếp điểm). Nếu \(MI = 10cm\) thì độ dài MB bằng
A. 6 cm.
B. 8 cm.
C. 7 cm.
D. 10 cm.
Phương pháp giải:
+ Chứng minh tam giác MBI vuông tại B.
+ Áp dụng định lí Pythagore vào tam giác MBI vuông tại B ta tính được MB.
Lời giải chi tiết:
Vì MB là tiếp tuyến của (I) nên \(MB \bot IB\) tại B. Khi đó tam giác IMB vuông tại B.
Áp dụng định lí Pythagore vào tam giác MBI vuông tại B ta có:
\(I{B^2} + M{B^2} = M{I^2}\)
\(MB = \sqrt {M{I^2} - I{B^2}} = \sqrt {{{10}^2} - {6^2}} = 8\left( {cm} \right)\)
Chọn B
Câu 3
Trả lời Câu 3 trang 112 Vở thực hành Toán 9
Cho đường thẳng a và một điểm O cách a là 3cm. Vẽ đường tròn (O; 5cm). Gọi B, C là các giao điểm của đường thẳng a và (O). Diện tích của tam giác OBC bằng
A. \(10c{m^2}\).
B. \(6c{m^2}\).
C. \(24c{m^2}\).
D. \(12c{m^2}\).
Phương pháp giải:
+ Qua O kẻ đường thẳng vuông góc với BC tại H. Khi đó, OH là khoảng cách từ O đến đường thẳng a. Do đó, \(OH = 3cm\).
+ Chứng minh tam giác OBC cân tại O, suy ra OH là đường trung tuyến, suy ra \(BH = HC = \frac{1}{2}BC\).
+ Áp dụng định lí Pythagore vào tam giác BOH vuông tại H tính được BH, từ đó tính được BC.
+ Diện tích tam giác OBC là: \(S = \frac{1}{2}OH.BC\)
Lời giải chi tiết:
Qua O kẻ đường thẳng vuông góc với BC tại H. Khi đó, OH là khoảng cách từ O đến đường thẳng a. Do đó, \(OH = 3cm\).
Tam giác OBC có: \(OB = OC\) (bán kính (O)) nên tam giác BOC cân tại O. Do đó, OH là đường cao đồng thời là đường trung tuyến của tam giác OBC. Suy ra \(BH = HC = \frac{1}{2}BC\).
Áp dụng định lí Pythagore vào tam giác BOH vuông tại H có:
\(O{H^2} + B{H^2} = O{B^2}\) nên \(BH = \sqrt {B{O^2} - O{H^2}} = \sqrt {{5^2} - {3^2}} = 4\left( {cm} \right)\) nên \(BC = 2BH = 2.4 = 8\left( {cm} \right)\)
Diện tích tam giác OBC là: \(S = \frac{1}{2}OH.BC = \frac{1}{2}.3.8 = 12\left( {c{m^2}} \right)\)
Chọn D
Câu 4
Trả lời Câu 4 trang 113 Vở thực hành Toán 9
Cho đường tròn (O) và điểm M nằm ngoài đường tròn, vẽ hai tiếp tuyến MA và MB của đường tròn (O). Biết \(\widehat {AMB} = {35^o}\). Số đo cung nhỏ AB là
A. \({145^o}\).
B. \({215^o}\).
C. \({125^o}\).
D. \({235^o}\).
Phương pháp giải:
+ Chứng minh \(\widehat {MAO} = \widehat {MBO} = {90^o}\).
+ Tứ giác \(\widehat {MAO} + \widehat {MBO} + \widehat {AMB} + \widehat {AOB} = {360^o}\), từ đó tính được góc AOB, suy ra số đo cung nhỏ AB.
Lời giải chi tiết:
Vì MA, MB là tiếp tuyến của đường tròn (O) nên \(MA \bot OA,MB \bot OB\) nên \(\widehat {MAO} = \widehat {MBO} = {90^o}\).
Tứ giác MBOA có: \(\widehat {MAO} + \widehat {MBO} + \widehat {AMB} + \widehat {AOB} = {360^o}\)
\(\widehat {AOB} = {360^o} - \widehat {MAO} - \widehat {MBO} - \widehat {AMB} = {360^o} - {90^o} - {90^o} - {35^o} = {145^o}\)
Vì góc ở tâm AOB chắn cung nhỏ AB nên số đo cung nhỏ AB bằng \({145^o}\).
Chọn A