Giải bài 9 trang 125 vở thực hành Toán 9

2024-09-14 18:42:21

Đề bài

Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Một đường thẳng d đi qua A cắt (O) tại E và cắt (O’) tại F (E và F khác A). Biết điểm A nằm trong đoạn EF. Gọi I và K lần lượt là trung điểm của AE và AF (H.5.49).

a) Chứng minh rằng tứ giác OO’KI là một hình thang vuông.

b) Chứng minh rằng \(IK = \frac{1}{2}EF\).

c) Khi d ở vị trí nào (d vẫn qua A) thì OO’KI là một hình chữ nhật?

Phương pháp giải - Xem chi tiết

a) Chứng minh \(OI \bot d\), \(KO' \bot d\) suy ra OI//KO’. Từ đó chứng minh được tứ giác OO’KI là một hình thang vuông.

b) Ta có: \(AE = 2AI\), \(AF = 2AK\) nên \(EF = AE + AF = 2\left( {AI + AK} \right) = 2IK\) nên \(IK = \frac{1}{2}EF\).

c) + Hình thang OO’KI là hình chữ nhật khi IK//OO’.

Lời giải chi tiết

(H.5.50)

a) \(\Delta \)AOE là tam giác cân tại O (OA=OE) có OI là đường trung tuyến (vì I là trung điểm của AE) nên OI cũng là đường cao, tức là \(\widehat {AIO} = {90^o}\) hay \(OI \bot d\). Tương tự, đối với tam giác AO’F, ta có \(\widehat {AKO'} = {90^o}\) hay \(KO' \bot d\). Do đó, OI//KO’ (cùng vuông góc với d).

Tứ giác OO’KI có: OI//KO’, \(\widehat {O'KI} = {90^o}\) nên là hình thang vuông.

b) Theo đề bài, \(EI = IA\) và \(AK = KF\) nên ta có \(AE = 2AI\) và \(AF = 2AK\).

Ta có: \(EF = AE + AF = 2AI + 2AK = 2\left( {AI + AK} \right) = 2IK\). Do đó, \(IK = \frac{1}{2}EF\).

c) Khi d đi qua A thì tứ giác OO’KI luôn là hình thang vuông.

Nếu hình thang vuông đó là hình chữ nhật thì IK//OO’, hay d//OO’.

Ngược lại, nếu d//OO’ thì IK//OO’ nên OO’KI là hình chữ nhật.

Vậy để tứ giác OO’KI là hình chữ nhật thì d//OO’.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"