Giải câu hỏi trắc nghiệm trang 122 vở thực hành Toán 9

2024-09-14 18:42:25

Chọn phương án đúng trong mỗi câu sau:

Câu 1

Trả lời Câu 1 trang 122 Vở thực hành Toán 9

Cho đường tròn (O; 4cm) và hai điểm A, B. Biết \(OA = \sqrt {15} cm\) và \(OB = 4cm\). Khi đó:

A. Điểm A nằm trong (O), điểm B nằm ngoài (O).

B. Điểm A nằm ngoài (O), điểm B nằm trên (O).

C. Điểm A nằm trên (O), điểm B nằm trong (O).

D. Điểm A nằm trong (O), điểm B nằm trên (O).

Phương pháp giải:

+ Điểm M nằm trên đường tròn (O; R) nếu \(OM = R\).

+ Điểm M nằm trong đường tròn (O; R) nếu \(OM < R\).

+ Điểm M nằm ngoài đường tròn (O; R) nếu \(OM > R\). 

Lời giải chi tiết:

Vì \(OA < 4cm\) nên điểm A nằm trong (O) và \(OB = 4cm\) nên điểm B nằm trên (O).

Chọn D


Câu 2

Trả lời Câu 2 trang 122 Vở thực hành Toán 9

Cho Hình 5.42, trong đó BD là đường kính, \(\widehat {AOB} = {40^o};\widehat {BOC} = {100^o}\). Khi đó:

A. \(sđ\overset\frown{DC}={{80}^{o}}\) và \(sđ\overset\frown{AD}={{220}^{o}}\).

B. \(sđ\overset\frown{DC}={{280}^{o}}\) và \(sđ\overset\frown{AD}={{220}^{o}}\).

C. \(sđ\overset\frown{DC}={{280}^{o}}\) và \(sđ\overset\frown{AD}={{140}^{o}}\).

D. \(sđ\overset\frown{DC}={{80}^{o}}\) và \(sđ\overset\frown{AD}={{140}^{o}}\).

Phương pháp giải:

Trong một đường tròn, số đo cung nhỏ bằng số đo góc ở tâm chắn cung đó.

Lời giải chi tiết:

Ta có: \(\widehat {BOC} + \widehat {DOC} = {180^o}\) nên \(\widehat {DOC} = {180^o} - \widehat {BOC} = {180^o} - {100^o} = {80^o}\).

\(\widehat {BOA} + \widehat {DOA} = {180^o}\) nên \(\widehat {DOA} = {180^o} - \widehat {BOA} = {180^o} - {40^o} = {140^o}\).

Vì góc ở tâm DOA chắn cung nhỏ AD nên \(sđ\overset\frown{AD}=\widehat{DOA}={{140}^{o}}\).

Vì góc ở tâm DOC chắn cung nhỏ DC nên \(sđ\overset\frown{DC}=\widehat{DOC}={{80}^{o}}\).

Chọn D


Câu 3

Trả lời Câu 3 trang 122 Vở thực hành Toán 9

Cho hai đường tròn \(\left( {A;{R_1}} \right),\left( {B;{R_2}} \right)\), trong đó \({R_2} < {R_1}\). Biết rằng hai đường tròn (A) và (B) cắt nhau (H.5.43). Khi đó:

A. \(AB < {R_1} - {R_2}\).

B. \({R_1} - {R_2} < AB < {R_1} + {R_2}\).

C. \(AB > {R_1} + {R_2}\).

D. \(AB = {R_1} + {R_2}\).

Phương pháp giải:

Hai đường tròn (O; R) và (O’; r) (với \(R > r\)) cắt nhau khi \(R - r < OO' < R + r\).

Lời giải chi tiết:

Vì hai đường tròn (A) và (B) cắt nhau nên \({R_1} - {R_2} < AB < {R_1} + {R_2}\).

Chọn B


Câu 4

Trả lời Câu 4 trang 122 Vở thực hành Toán 9

Cho đường tròn (O; R) và hai đường thẳng \({a_1}\) và \({a_2}\). Gọi \({d_1},{d_2}\) lần lượt là khoảng cách từ điểm O đến \({a_1}\) và \({a_2}\). Biết rằng (O) cắt \({a_1}\) và tiếp xúc với \({a_2}\) (H.5.44). Khi đó:

A. \({d_1} < R\) và \({d_2} = R\).

B. \({d_1} = R\) và \({d_2} < R\).

C. \({d_1} > R\) và \({d_2} = R\).

D. \({d_1} < R\) và \({d_2} < R\).

Phương pháp giải:

Cho đường thẳng a và đường tròn (O; R). Gọi d là khoảng cách từ O đến a. Khi đó:

+ Đường thẳng a và đường tròn (O; R) cắt nhau khi \(d < R\).

+ Đường thẳng a và đường tròn (O; R) tiếp xúc với nhau khi \(d = R\).

+ Đường thẳng a và đường tròn (O; R) không giao nhau khi \(d > R\).

Lời giải chi tiết:

Vì (O) cắt \({a_1}\) nên \({d_1} < R\). Vì (O) tiếp xúc với \({a_2}\) nên \({d_2} = R\).

Chọn A

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"