Giải bài 2.27 trang 29 sách bài tập toán 9 - Kết nối tri thức tập 1

2024-09-14 18:49:43

Đề bài

Hai ô tô khởi hành cùng một lúc từ A đến B trên cùng quãng đường dài 150km. Vận tốc xe thứ nhất hơn vận tốc xe thứ hai là 10km/h và xe thứ nhất đến B sớm hơn xe thứ hai là 30 phút. Hỏi vận tốc của hai xe là bao nhiêu?

Phương pháp giải - Xem chi tiết

+ Gọi vận tốc của xe thứ hai là x (km/h) (\(x > 0\)).

+ Dựa theo dữ kiện bài toán đầu bài cho, ta lập được phương trình chứa ẩn x, từ đó giải phương trình tìm x và đưa ra kết luận.

Lời giải chi tiết

Gọi vận tốc của xe thứ hai là x (km/h). Điều kiện: \(x > 0\)

Vận tốc của xe thứ nhất là \(x + 10\left( {km/h} \right)\).

Thời gian xe thứ nhất đi từ A đến B là: \(\frac{{150}}{{x + 10}}\) (giờ).

Thời gian xe thứ hai đi từ A đến B là: \(\frac{{150}}{x}\) (giờ).

Vì xe thứ nhất đến B sớm hơn xe thứ hai là 30 phút\( = \frac{1}{2}\) giờ nên ta có phương trình: \(\frac{{150}}{x} - \frac{{150}}{{x + 10}} = \frac{1}{2}\)

Quy đồng mẫu hai vế của phương trình ta được: \(\frac{{2.150\left( {x + 10} \right) - 2.150x}}{{2x\left( {x + 10} \right)}} = \frac{{x\left( {x + 10} \right)}}{{2x\left( {x + 10} \right)}}\)

Suy ra \(300\left( {x + 10} \right) - 300x = x\left( {x + 10} \right)\)

\(300x + 3000 - 300x = {x^2} + 10x\)

\({x^2} + 10x + 25 = 3025\)

\({\left( {x + 5} \right)^2} = {55^2}\)

\(x + 5 = 55\) (do \(x \ge 0\) nên \(x + 5 \ge 5\))

\(x = 50\)

Giá trị \(x = 50\) thỏa mãn điều kiện của ẩn.

Vậy vận tốc của xe thứ nhất và thứ hai lần lượt là 60km/h và 50km/h.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"