Giải bài 2.24 trang 29 sách bài tập toán 9 - Kết nối tri thức tập 1

2024-09-14 18:49:44

Đề bài

Chứng minh rằng với số \(a > 0,b > 0\) bất kì, ta luôn có \(\frac{a}{b} + \frac{b}{a} \ge 2\).

Phương pháp giải - Xem chi tiết

Chứng minh hiệu \(\frac{a}{b} + \frac{b}{a} - 2 \ge 0\), suy ra \(\frac{a}{b} + \frac{b}{a} \ge 2\) với mọi \(a > 0,b > 0\).

Lời giải chi tiết

Ta có: \(\frac{a}{b} + \frac{b}{a} - 2 = \frac{{{a^2} - 2ab + {b^2}}}{{ab}} = \frac{{{{\left( {a - b} \right)}^2}}}{{ab}}\)

Với \(a > 0,b > 0\) thì \({\left( {a - b} \right)^2} \ge 0,ab > 0\), suy ra \(\frac{{{{\left( {a - b} \right)}^2}}}{{ab}} \ge 0\).

Do đó, \(\frac{a}{b} + \frac{b}{a} \ge 2\) với mọi \(a > 0,b > 0\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"