Giải bài 2.23 trang 29 sách bài tập toán 9 - Kết nối tri thức tập 1

2024-09-14 18:49:44

Đề bài

a) Cho \(a < b\) và \(c < d\), chứng minh rằng \(a + c < b + d\).

b) Cho \(0 < a < b\) và \(0 < c < d\), chứng minh rằng \(0 < ac < bd\).

Phương pháp giải - Xem chi tiết

a) + Với ba số a, b, c ta có: \(a < b\) thì \(a + c < b + c\).

+ Nếu \(a < b,b < c\) thì \(a < c\).

b) + Với ba số a, b, c ta có: \(a < b\) và \(c > 0\) thì \(ac < bc\).

+ Nếu \(a < b,b < c\) thì \(a < c\).

Lời giải chi tiết

a) Từ \(a < b\), suy ra \(a + c < b + c\).

Từ \(c < d\), suy ra \(b + c < b + d\).

Do đó, theo tính chất bắc cầu của bất đẳng thức ta suy ra \(a + c < b + d\).

b) Từ \(a > 0\) và \(c > 0\) suy ra \(ac > 0\) (1).

Từ \(a < b\) nên \(ac < bc\) (do nhân hai vế với \(c > 0\)) (2)

Từ \(c < d\) suy ra \(bc < bd\) (do nhân hai vế với \(b > 0\)) (3)

Theo tính chất bắc cầu, từ (1), (2) và (3) suy ra \(0 < ac < bd\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"