Đề bài
Sử dụng các hằng đẳng thức đáng nhớ hiệu hai bình phương và bình phương của một hiệu, rút gọn:
a) \(\left( {\sqrt 3 + \sqrt 2 } \right)\left( {\sqrt 3 - \sqrt 2 } \right)\);
b) \(\sqrt {2 - 2\sqrt 2 + 1} \).
Phương pháp giải - Xem chi tiết
+ \(\sqrt {{A^2}} = \left| A \right|\) với mọi biểu thức A.
+ \({\left( {\sqrt x } \right)^2} = x\left( {x \ge 0} \right)\).
Lời giải chi tiết
a) \(\left( {\sqrt 3 + \sqrt 2 } \right)\left( {\sqrt 3 - \sqrt 2 } \right) \)
\(= {\left( {\sqrt 3 } \right)^2} - {\left( {\sqrt 2 } \right)^2} = 3 - 2 = 1\);
b) \(\sqrt {2 - 2\sqrt 2 + 1} = \sqrt {{{\left( {\sqrt 2 - 1} \right)}^2}} \)
\(= \left| {\sqrt 2 - 1} \right| = \sqrt 2 - 1\).