Giải bài 3.20 trang 36 sách bài tập toán 9 - Kết nối tri thức tập 1

2024-09-14 18:49:49

Đề bài

a) Trục căn thức ở mẫu của biểu thức \(\frac{{3 + \sqrt 2 }}{{2\sqrt 2  - 1}}\).

b) Tính giá trị biểu thức \(P = x\left( {{x^4} - 6{x^2} + 1} \right)\) tại \(x = \frac{{3 + \sqrt 2 }}{{2\sqrt 2  - 1}}\).

Phương pháp giải - Xem chi tiết

Với các biểu thức A, B, C mà \(A \ge 0,A \ne {B^2}\) ta có \(\frac{C}{{\sqrt A  - B}} = \frac{{C\left( {\sqrt A  + B} \right)}}{{A - {B^2}}}\).

Lời giải chi tiết

a) \(\frac{{3 + \sqrt 2 }}{{2\sqrt 2  - 1}} \)

\(= \frac{{\left( {3 + \sqrt 2 } \right)\left( {2\sqrt 2  + 1} \right)}}{{\left( {2\sqrt 2  - 1} \right)\left( {2\sqrt 2  + 1} \right)}} \\= \frac{{2\sqrt 2 \left( {3 + \sqrt 2 } \right) + 3 + \sqrt 2 }}{{{{\left( {2\sqrt 2 } \right)}^2} - {1^2}}} \\= \frac{{6\sqrt 2  + 4 + 3 + \sqrt 2 }}{7} \\= \frac{{7\sqrt 2  + 7}}{7}\\= \frac{{7\left( {\sqrt 2  + 1} \right)}}{7} \\= \sqrt 2  + 1\)

b) Ta có: \(P = x\left[ {{{\left( {{x^2} - 3} \right)}^2} - 8} \right]\)

Với \(x = \frac{{3 + \sqrt 2 }}{{2\sqrt 2  - 1}} = \sqrt 2  + 1\) thì:

\({x^2} - 3 = {\left( {\sqrt 2  + 1} \right)^2} - 3 \\= {\left( {\sqrt 2 } \right)^2} + 2\sqrt 2  + 1 - 3 \\= 2\sqrt 2 .\)

Do đó,

\(P = \left( {\sqrt 2  + 1} \right)\left[ {{{\left( {2\sqrt 2 } \right)}^2} - 8} \right] \)\(= \left( {\sqrt 2  + 1} \right).0 = 0\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"