Đề bài
Sử dụng định nghĩa căn bậc ba của một số thực, tính giá trị của các biểu thức sau:
a) \(\sqrt[3]{{ - 27}} + 2\sqrt[3]{{\frac{1}{8}}} + 5\sqrt[3]{{ - 0,008}}\);
b) \(\sqrt[3]{{0,001}} - 3\sqrt[3]{{\frac{8}{{125}}}} + 2\sqrt[3]{{ - 64}}\).
Phương pháp giải - Xem chi tiết
\({\left( {\sqrt[3]{a}} \right)^3} = \sqrt[3]{{{a^3}}} = a\).
Lời giải chi tiết
a) \(\sqrt[3]{{ - 27}} + 2\sqrt[3]{{\frac{1}{8}}} + 5\sqrt[3]{{ - 0,008}} \)
\(= \sqrt[3]{{{{\left( { - 3} \right)}^3}}} + 2\sqrt[3]{{{{\left( {\frac{1}{2}} \right)}^3}}} + 5\sqrt[3]{{{{\left( { - 0,2} \right)}^3}}} \\= - 3 + 2.\frac{1}{2} + 5.\left( { - 0,2} \right) = - 3;\)
b) \(\sqrt[3]{{0,001}} - 3\sqrt[3]{{\frac{8}{{125}}}} + 2\sqrt[3]{{ - 64}} \)
\(= \sqrt[3]{{{{0,1}^3}}} - 3\sqrt[3]{{{{\left( {\frac{2}{5}} \right)}^3}}} + 2\sqrt[3]{{{{\left( { - 4} \right)}^3}}}\\ = 0,1 - 3.\frac{2}{5} - 8 = \frac{{ - 91}}{{10}}.\)