Giải bài 4.7 trang 45 sách bài tập toán 9 - Kết nối tri thức tập 1

2024-09-14 18:49:59

Đề bài

Xét tam giác ABC vuông tại B, có \(\widehat A = {30^o}\). Tia Bt sao cho \(\widehat {CBt} = {30^o}\) cắt tia AC ở D, D nằm giữa A và C. Chứng minh rằng khoảng cách từ D đến đường thẳng BC bằng \(\frac{{AB}}{4}\).

Phương pháp giải - Xem chi tiết

+ Tam giác ABC vuông tại B, \(\widehat A = {30^o}\) nên tính được góc C.

+ Tính góc BDC từ đó suy ra tam giác BDC vuông tại D, suy ra \(\frac{{BD}}{{AB}} = \sin \widehat {BAD}\).

+ Gọi E là chân đường vuông góc kẻ từ D lên BC thì DE là khoảng cách từ D đến đường thẳng BC.

+ Tam giác BDE vuông tại E nên \(\frac{{DE}}{{BD}} = \sin \widehat {DBE}\).

+ Ta có: \(\frac{{DE}}{{AB}} = \frac{{DE}}{{BD}}.\frac{{BD}}{{AB}}\), từ đó tính được \(DE = \frac{{AB}}{4}\).

Lời giải chi tiết

Tam giác ABC vuông tại B nên \(\widehat C = {90^o} - \widehat A = {60^o}\).

Tam giác BCD có: \(\widehat {BDC} = {180^o} - \widehat {DBC} - \widehat C = {90^o}\). Do đó, tam giác BCD vuông tại D.

Suy ra, \(\frac{{BD}}{{AB}} = \sin \widehat {BAD} = \sin {30^o} = \frac{1}{2}\)

Gọi E là chân đường vuông góc kẻ từ D lên BC thì DE là khoảng cách từ D đến đường thẳng BC.

Trong tam giác BDE vuông tại E có: \(\frac{{DE}}{{BD}} = \sin \widehat {DBE} = \sin {30^o} = \frac{1}{2}\)

Ta có: \(\frac{{DE}}{{AB}} = \frac{{DE}}{{BD}}.\frac{{BD}}{{AB}} = \frac{1}{2}.\frac{1}{2} = \frac{1}{4}\), suy ra \(DE = \frac{{AB}}{4}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"