Đề bài
Biết rằng với mỗi góc nhọn \(\alpha \), ta có \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\), không dùng MTCT, hãy tính \({\sin ^2}{25^o} + {\sin ^2}{35^o} + {\sin ^2}{45^o} + {\sin ^2}{55^o} + {\sin ^2}{65^o}\).
Phương pháp giải - Xem chi tiết
Nếu hai góc phụ nhau thì sin góc này bằng côsin góc kia.
Lời giải chi tiết
\({\sin ^2}{25^o} + {\sin ^2}{35^o} + {\sin ^2}{45^o} + {\sin ^2}{55^o} + {\sin ^2}{65^o}\)
\( = {\cos ^2}\left( {{{90}^o} - {{25}^o}} \right) + {\cos ^2}\left( {{{90}^o} - {{35}^o}} \right) + {\sin ^2}{45^o} + {\sin ^2}{55^o} + {\sin ^2}{65^o}\)
\( = {\cos ^2}{65^o} + {\cos ^2}{55^o} + {\sin ^2}{55^o} + {\sin ^2}{65^o} + {\sin ^2}{45^o}\)
\( = \left( {{{\cos }^2}{{65}^o} + {{\sin }^2}{{65}^o}} \right) + \left( {{{\cos }^2}{{55}^o} + {{\sin }^2}{{55}^o}} \right) + {\sin ^2}{45^o} \)
\(= 1 + 1 + {\left( {\frac{{\sqrt 2 }}{2}} \right)^2} = \frac{5}{2}\)