Giải bài 4.19 trang 48 sách bài tập toán 9 - Kết nối tri thức tập 1

2024-09-14 18:50:08

Đề bài

Gọi AH là đường cao của tam giác ABC vuông tại A. Tính \(\tan \widehat {ABH}\) và \(\tan \widehat {CAH}\), suy ra \(A{H^2} = BH.CH\).

Phương pháp giải - Xem chi tiết

+ Xét tam giác ABC vuông tại A có góc nhọn B bằng \(\alpha \) thì tỉ số giữa cạnh đối và cạnh kề gọi là tan của \(\alpha \).

+ Hai góc phụ nhau thì tan góc này bằng côtang góc kia.

Lời giải chi tiết

Tam giác AHC vuông tại H nên \(\tan \widehat {CAH} = \frac{{HC}}{{AH}}\), \(\tan \widehat {ACH} = \frac{{AH}}{{HC}}\)

Tam giác AHB vuông tại H nên \(\tan \widehat {ABH} = \frac{{AH}}{{BH}}\).

Hai góc ABH và ACH là hai góc phụ nhau nên \(\tan \widehat {ABH} = \cot \widehat {ACH} = \frac{1}{{\tan \widehat {ACH}}}\).

Do đó \(\frac{{AH}}{{BH}} = \frac{{HC}}{{AH}}\).

Suy ra \(A{H^2} = BH.CH\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"