Giải bài 4.33 trang 52 sách bài tập toán 9 - Kết nối tri thức tập 1

2024-09-14 18:50:15

Đề bài

Tính khoảng cách giữa hai địa điểm A, B ở hai bên hồ nước (không đo trực tiếp được), biết khoảng cách từ một địa điểm C đến A và đến B là \(CA = 90m\), \(CB = 150m,\;\widehat {CAB} = {120^o}\) (làm tròn đến m) (H.4.18).

Phương pháp giải - Xem chi tiết

+ Kẻ đường cao CK của tam giác ABC. Chỉ ra K nằm ngoài đoạn AB.

+ Tính được \(\widehat {CAK} = {60^o}\).

+ Tam giác CAK vuông tại K nên \(AK = AC.\cos \widehat {CAK}\).

+ Áp dụng định lí Pythagore vào tam giác BKC vuông tại K để tính BK.

+ \(AB = BK - AK\).

Lời giải chi tiết

Kẻ đường cao CK của tam giác ABC.

Vì góc CAB là góc tù nên chân K của đường cao CK của tam giác ABC nằm ngoài đoạn AB.

Ta có: \(\widehat {CAK} = {180^o} - \widehat {BAC} = {180^o} - {120^o} = {60^o}\).

Tam giác CAK vuông tại K nên \(AK = AC.\cos \widehat {CAK} = 90.\cos {60^o} = 90.\frac{1}{2} = 45\left( m \right)\), \(CK = AC.\sin \widehat {CAK} = 90.\sin {60^o} = 90.\frac{{\sqrt 3 }}{2} = 45\sqrt 3 \left( m \right)\)

Tam giác BCK vuông tại K nên theo định lí Pythagore ta có:

\(B{K^2} = B{C^2} - C{K^2} = {150^2} - {\left( {45\sqrt 3 } \right)^2} = {15^2}.73\) nên \(BK = 15\sqrt {73} \left( m \right)\)

Vậy \(AB = BK - AK = 15\sqrt {73}  - 45 \approx 83\left( m \right)\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"