Giải bài 4.32 trang 52 sách bài tập toán 9 - Kết nối tri thức tập 1

2024-09-14 18:50:15

Đề bài

Cho tam giác ABC có đường cao AH, \(\widehat B = {60^o},\widehat C = {45^o}\) và cạnh \(BC = 6cm\). Chứng minh rằng \(AH = 3\left( {3 - \sqrt 3 } \right)cm\).

Phương pháp giải - Xem chi tiết

+ Chỉ ra H nằm giữa B và C.

+ Tam giác ABH vuông tại H nên \(AH = BH.\tan B\), suy ra \(BH = \frac{{AH}}{{\sqrt 3 }}\).

+ Chứng minh tam giác ACH vuông cân tại H, suy ra \(CH = AH\).

+ \(BC = BH + CH = AH\left( {\frac{1}{{\sqrt 3 }} + 1} \right)\), từ đó suy ra \(AH = 3\left( {3 - \sqrt 3 } \right)cm\).

Lời giải chi tiết

Tam giác ABC có góc B và góc C đều nhọn nên H nằm giữa B và C.

Tam giác ABH vuông tại H nên \(AH = BH.\tan B = BH.\tan {60^o} = \sqrt 3 BH\),

suy ra \(BH = \frac{{AH}}{{\sqrt 3 }}\).

Tam giác ACH vuông tại H có \(\widehat C = {45^o}\) nên tam giác ACH vuông cân tại H nên \(CH = AH\).

Ta có: \(BC = BH + CH = AH\left( {\frac{1}{{\sqrt 3 }} + 1} \right)\) nên \(\frac{{\sqrt 3  + 1}}{{\sqrt 3 }}AH = 6\),

suy ra \(AH = \frac{{6\sqrt 3 }}{{\sqrt 3  + 1}} = 3\left( {3 - \sqrt 3 } \right)\left( {cm} \right)\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"