Giải bài 5.13 trang 62 sách bài tập toán 9 - Kết nối tri thức tập 1

2024-09-14 18:50:26

Đề bài

Trên bờ của một cái ao cá hình tròn, người ta dựng ba cái chòi câu cá tại các điểm A, B và C. Biết rằng tam giác ABC cân tại B và có \(AB = BC = 10m,\widehat {ABC} = {120^o}\) (H.5.5).

a) Tính bán kính của ao cá.

b) Tính độ dài quãng đường (men theo bờ ao) từ chòi A đến chòi B và chòi C (làm tròn kết quả đến chữ số thập phân thứ nhất).

Phương pháp giải - Xem chi tiết

a) + Chứng minh O thuộc đường trung trực của AC.

+ Chứng minh AC là phân giác của góc ABC, từ đo tính được góc ABO.

+ Chứng minh tam giác ABO đều, suy ra \(AO = AB = 10m\).

b) Độ dài l của cung \({n^o}\) trên đường tròn (O; R) là \(l = \frac{n}{{180}}.\pi R\).

Lời giải chi tiết

a) Gọi O là tâm của hình tròn (ao), ta có \(OA = OC\) nên O thuộc đường trung trực của AC. Mà tam giác ABC cân tại B nên đường trung trực của AC cũng là phân giác của góc ABC nên \(\widehat {ABO} = \frac{1}{2}\widehat {ABC} = {60^o}\)

Tam giác AOB có \(OA = OB,\widehat {ABO} = {60^o}\) nên tam giác AOB đều. Do đó, \(AO = AB = 10m\). Vậy bán kính của ao cá bằng 10m.

b) Độ dài quãng đường từ chòi A đến chòi B là độ dài cung nhỏ AB.

Theo phần a, ta có \(\widehat {AOB} = {60^o}\) và bán kính đường tròn là 10m nên quãng đường đó là: \(\frac{{60}}{{180}}.\pi .10 = \frac{{10\pi }}{3} \approx 10,5\left( m \right)\)

Theo phần a ta thấy hai cung AB và BC có cùng số đo bằng 60 độ nên chúng bằng nhau và độ dài của chúng cũng bằng nhau. Do đó, quãng đường từ A đến C men theo bờ bằng 2 lần độ dài cung AB. Suy ra, độ dài quãng đường A đến C men theo bờ là: \(\frac{{20\pi }}{3} \approx 20,9\left( m \right)\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"