Giải bài 5.12 trang 62 sách bài tập toán 9 - Kết nối tri thức tập 1

2024-09-14 18:50:27

Đề bài

Độ dài của một cung tròn bằng \(\frac{2}{5}\) chu vi của hình tròn có cùng bán kính. Tính diện tích của hình quạt tròn ứng với cung tròn đó, biết diện tích của hình tròn là \(S = 20c{m^2}\).

Phương pháp giải - Xem chi tiết

+ Gọi R, C, S lần lượt là bán kính, chu vi là diện tích của hình tròn.

+ Tính được \(\frac{{\frac{n}{{180}}.\pi R}}{{2\pi R}} = \frac{n}{{360}} = \frac{2}{5}\).

+ Tính tỉ số \(\frac{{{S_q}}}{S} = \frac{{\frac{n}{{360}}.\pi {R^2}}}{{\pi {R^2}}} = \frac{n}{{360}}\). Do đó, \(\frac{{{S_q}}}{S} = \frac{2}{5}\). Từ đó tính được \({S_q}\).

Lời giải chi tiết

Gọi R, C, S lần lượt là bán kính, chu vi là diện tích của hình tròn.

Khi đó, diện tích của hình tròn là: \(S = \pi {R^2}\), chu vi của đường tròn bán kính R là: \(C = 2\pi R\).

Vì độ dài một cung tròn bằng \(\frac{2}{5}\) chu vi hình tròn cùng bán kính R nên: \(\frac{{\frac{n}{{180}}.\pi R}}{{2\pi R}} = \frac{n}{{360}} = \frac{2}{5}\) (1).

Diện tích hình quạt tròn ứng với cung tròn có độ dài bằng \(\frac{2}{5}\) chu vi của hình tròn bán kính R là: \({S_q} = \frac{n}{{360}}.\pi {R^2}\).

Ta có: \(\frac{{{S_q}}}{S} = \frac{{\frac{n}{{360}}.\pi {R^2}}}{{\pi {R^2}}} = \frac{n}{{360}}\) (2)

Từ (1) và (2) ta có: \(\frac{{{S_q}}}{S} = \frac{2}{5}\), suy ra: \({S_q} = \frac{2}{5}.S = \frac{2}{5}.20 = 8\left( {c{m^2}} \right)\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"