Giải bài 5.23 trang 68 sách bài tập toán 9 - Kết nối tri thức tập 1

2024-09-14 18:50:33

Đề bài

Vẽ hình và chứng minh phần b của Ví dụ 2.

Ví dụ 2: Cho đường tròn (O) và dây AB không là đường kính của (O).
a) Gọi O' là một điểm tùy ý nằm giữa O và A. Đường thẳng đi qua O' và song song với OB cắt AB tại C. Hãy xác định vị trí tương đối của (O) và (O'; O'C).
b) Vị trí tương đối của (O) và (O'; O'C) sẽ như thế nào nếu O' thẳng hàng với O và A, nhưng nằm ngoài đoạn OA?

Phương pháp giải - Xem chi tiết

- Trường hợp 1: O và O’ nằm cùng phía với A (O nằm giữa O’ và A).

+ Chứng minh $\Delta O'AC\backsim \Delta OAB$.

+ Chứng minh tam giác OAB cân tại O, suy ra tam giác O’AC cân tại O’ và \(O'C = O'A\).

+ \(OO' = O'A - OA = O'C - OA\). Do đó, đường tròn (O’; O’C) tiếp xúc trong với đường tròn (O; OA).

- Trường hợp 2: O và O’ nằm khác phía với A (A nằm giữa O’ và O).

+ Chứng minh $\Delta O'AC\backsim \Delta OAB$.

+ Chứng minh tam giác OAB cân tại O. Do đó, tam giác O’AC cân tại O’ và \(O'C = O'A\).

+ \(OO' = O'A + OA = O'C + OA\). Do đó, đường tròn (O’; O’C) tiếp xúc ngoài với đường tròn (O; OA).

Lời giải chi tiết

Trường hợp 1: O và O’ nằm cùng phía với A (O nằm giữa O’ và A).

Vì CO’//OB nên $\Delta O'AC\backsim \Delta OAB$.

Vì OA=OB nên tam giác OAB cân tại O. Do đó, tam giác O’AC cân tại O’ và \(O'C = O'A\).

Lại có: \(OO' = O'A - OA = O'C - OA\). Do đó, đường tròn (O’; O’C) tiếp xúc trong với đường tròn (O; OA).

Trường hợp 2: O và O’ nằm khác phía với A (A nằm giữa O’ và O).

Vì CO’//OB nên $\Delta O'AC\backsim \Delta OAB$.

Vì OA=OB nên tam giác OAB cân tại O. Do đó, tam giác O’AC cân tại O’ và \(O'C = O'A\).

Lại có: \(OO' = O'A + OA = O'C + OA\). Do đó, đường tròn (O’; O’C) tiếp xúc ngoài với đường tròn (O; OA).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"