Giải bài 5.34 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 1

2024-09-14 18:50:35

Đề bài

Cho hai đường tròn (O; R) và (O’; R’) tiếp xúc ngoài với nhau tại A, hai điểm \(B \in \left( O \right)\) và \(C \in \left( {O'} \right)\) sao cho B và C nằm cùng phía đối với đường thẳng OO’ và OB//O’C.

a) Chứng minh góc BAC là góc vuông.

b) Cho biết \(R = 3cm\), \(R' = 1cm\) và BC cắt OO’ tại D. Tính độ dài đoạn OD.

Phương pháp giải - Xem chi tiết

a) + Chứng minh tam giác AOB cân tại O nên \(\widehat {{A_1}} = \widehat {{B_1}}\).

+ Tam giác AOB có:

\(\widehat {{A_1}} + \widehat {{O_1}} + \widehat {{B_1}} = 2\widehat {{A_1}} + \widehat {{O_1}} = {180^o}\) nên \(2\widehat {{A_1}} = {180^o} - \widehat {{O_1}}\).

+ Chứng minh tam giác AO’C cân tại O’. Do đó, \(\widehat {{A_2}} = \widehat {O'CA}\).

+ Tam giác AO’C có:

\(\widehat {{A_2}} + \widehat {O{'_1}} + \widehat {O'CA} = 2\widehat {{A_2}} + \widehat {O{'_1}} = {180^o}\) nên \(2\widehat {{A_2}} = {180^o} - \widehat {O{'_1}}\).

+ Do đó:

\(2\left( {\widehat {{A_1}} + \widehat {{A_2}}} \right) = {360^o} - \left( {\widehat {{O_1}} + \widehat {O{'_1}}} \right)\) (1)

Chứng minh

\(\widehat {{O_2}} = \widehat {O{'_1}}\), \(\widehat {{O_2}} + \widehat {{O_1}} = {180^o}\) nên \(\widehat {{O_1}} + \widehat {O{'_1}} = {180^o}\) (2)

Từ (1) và (2) ta có:

\(2\left( {\widehat {{A_1}} + \widehat {{A_2}}} \right) = {360^o} - {180^o} = {180^o}\) nên \(\widehat {BAC} = {90^o}\).

b) + Ta có: \(OA = OB = R = 3cm,O'A = O'C = R' = 1cm\).

+ Chứng minh \(\frac{{DO}}{{DO'}} = \frac{{OB}}{{O'C}} = \frac{3}{1}\)

+ \(DO' = DO - OO' = DO - \left( {OA + O'A} \right)\) \( = DO - \left( {3 + 1} \right) = DO - 4\) (4)

+ Do đó, \(\frac{{DO}}{{DO - 4}} = \frac{3}{1}\), từ đó tính được DO.

Lời giải chi tiết

a) Vì \(OA = OB\) (bán kính của (O)) nên tam giác AOB cân tại O. Do đó, \(\widehat {{A_1}} = \widehat {{B_1}}\).

Tam giác AOB có:

\(\widehat {{A_1}} + \widehat {{O_1}} + \widehat {{B_1}} = 2\widehat {{A_1}} + \widehat {{O_1}} = {180^o}\) nên \(2\widehat {{A_1}} = {180^o} - \widehat {{O_1}}\).

Vì \(O'A = O'C\) (bán kính của (O’)) nên tam giác AO’C cân tại O’. Do đó, \(\widehat {{A_2}} = \widehat {O'CA}\).

Tam giác AO’C có:

\(\widehat {{A_2}} + \widehat {O{'_1}} + \widehat {O'CA} = 2\widehat {{A_2}} + \widehat {O{'_1}} = {180^o}\) nên \(2\widehat {{A_2}} = {180^o} - \widehat {O{'_1}}\).

Do đó:

\(2\left( {\widehat {{A_1}} + \widehat {{A_2}}} \right) = {360^o} - \left( {\widehat {{O_1}} + \widehat {O{'_1}}} \right)\) (1)

Vì OB//O’C nên \(\widehat {{O_2}} = \widehat {O{'_1}}\) (hai góc đồng vị).

Lại có: \(\widehat {{O_2}} + \widehat {{O_1}} = {180^o}\) nên \(\widehat {{O_1}} + \widehat {O{'_1}} = {180^o}\) (2).

Từ (1) và (2) ta có:

\(2\left( {\widehat {{A_1}} + \widehat {{A_2}}} \right) = {360^o} - {180^o} = {180^o}\) nên \(\widehat {{A_1}} + \widehat {{A_2}} = {90^o}\), suy ra \(\widehat {BAC} = {90^o}\).

b) Ta có: \(OA = OB = R = 3cm,O'A = O'C = R' = 1cm\).

Tam giác DOB có O’C//OB nên

\(\frac{{DO}}{{DO'}} = \frac{{OB}}{{O'C}} = \frac{3}{1}\) (3)

Lại có:

\(DO' = DO - OO' = DO - \left( {OA + O'A} \right) \\= DO - \left( {3 + 1} \right) = DO - 4 \;(4)\)

Từ (3) và (4) ta có:

\(\frac{{DO}}{{DO - 4}} = \frac{3}{1}\), suy ra \(DO = 3\left( {DO - 4} \right)\), hay \(2DO = 12\), suy ra \(DO = 6cm\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"