Giải bài 5.28 trang 71 sách bài tập toán 9 - Kết nối tri thức tập 1

2024-09-14 18:50:38

Đề bài

Cho hình thang cân ABCD (AB//CD).

a) Chứng minh rằng đường trung trực d của AB cũng là đường trung trực của CD (từ đó suy ra hai điểm A và B đối xứng với nhau, C và D đối xứng với nhau qua d).

b) Giải thích tại sao nếu một đường tròn đi qua ba điểm A, B và C thì nó cũng đi qua điểm D.

Phương pháp giải - Xem chi tiết

a) - Trường hợp 1: DA cắt CB tại điểm S.

+ Chứng minh tam giác SAB cân tại S và tam giác SDC cân tại S.

+ Do đó, đường trung trực d của AB là đường phân giác của góc ASB và cũng là đường trung trực của DC. Suy ra, A và D lần lượt đối xứng với B và C qua d.

- Trường hợp 2: DA//CB. Khi đó hình thang cân ABCD là hình chữ nhật. Do đó, A và D lần lượt đối xứng với B và C qua d.

b) + Giả sử O là tâm của đường tròn đi qua ba điểm A, B, C.

+ Chứng minh đường trung trực d của AB đi qua O, suy ra d là trục đối xứng của đường tròn (O).

+ Vì D đối xứng với C qua d, mà \(C \in \left( O \right)\) nên \(D \in \left( O \right)\), hay (O) đi qua D.

Lời giải chi tiết

a) Trường hợp 1: DA cắt CB tại điểm S.

Vì ABCD là hình thang cân nên \(\widehat {SAB} = \widehat {SBA} = \widehat {SDC} = \widehat {SCD}\), suy ra tam giác SAB cân tại S và tam giác SDC cân tại S.

Do đó, đường trung trực d của AB là đường phân giác của góc ASB và cũng là đường trung trực của DC.

Suy ra, A và D lần lượt đối xứng với B và C qua d.

Trường hợp 2: DA//CB.

Khi đó hình thang cân ABCD là hình chữ nhật.

Do đó, A và D lần lượt đối xứng với B và C qua d.

b) Giả sử O là tâm của đường tròn đi qua ba điểm A, B, C.

Khi đó, đường trung trực d của AB đi qua O (vì \(OA = OB\)).

Do đó, d là trục đối xứng của đường tròn (O).

Theo câu a, D đối xứng với C qua d, mà \(C \in \left( O \right)\) nên \(D \in \left( O \right)\), hay (O) đi qua D.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"