Giải bài 6.8 trang 7 sách bài tập toán 9 - Kết nối tri thức tập 2

2024-09-14 18:50:41

Đề bài

Cho hàm số \(y = f\left( x \right) = a{x^2}\left( {a \ne 0} \right)\).

a) Chứng tỏ rằng nếu \(\left( {{x_0};{y_0}} \right)\) là một điểm thuộc đồ thị hàm số thì điểm \(\left( { - {x_0};{y_0}} \right)\) cũng nằm trên đồ thị hàm số đó.

b) Chứng minh rằng \(f\left( { - x} \right) = f\left( x \right)\) với mọi x thuộc \(\mathbb{R}\).

Phương pháp giải - Xem chi tiết

a) + Giả sử \(\left( {{x_0};{y_0}} \right)\) là một điểm thuộc đồ thị hàm số \(y = f\left( x \right) = a{x^2}\).

+ Chứng minh \({y_o} = a{\left( { - {x_o}} \right)^2}\) nên điểm \(\left( { - {x_0};{y_0}} \right)\) cũng nằm trên đồ thị hàm số \(y = f\left( x \right) = a{x^2}\).

b) Vì \(f\left( { - x} \right) = a{\left( { - x} \right)^2} = a{x^2} = f\left( x \right)\) với mọi x thuộc \(\mathbb{R}\).

Lời giải chi tiết

a) Giả sử \(\left( {{x_0};{y_0}} \right)\) là một điểm thuộc đồ thị hàm số \(y = f\left( x \right) = a{x^2}\). Suy ra: \({y_o} = ax_o^2\).

Ta có: \({y_o} = ax_o^2 = a{\left( { - {x_o}} \right)^2}\). Do đó, điểm \(\left( { - {x_0};{y_0}} \right)\) cũng nằm trên đồ thị hàm số \(y = f\left( x \right) = a{x^2}\).

b) Ta có: \(f\left( { - x} \right) = a{\left( { - x} \right)^2} = a{x^2} = f\left( x \right)\) với mọi x thuộc \(\mathbb{R}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"