Giải bài 6.9 trang 10 sách bài tập toán 9 - Kết nối tri thức tập 2

2024-09-14 18:50:47

Đề bài

Giải các phương trình sau bằng cách đưa về dạng tích:

a) \({x^2} + 5x = 0\);

b) \({x^2} - 16 = 0\);

c) \({x^2} - 10x + 25 = 0\);

d) \({x^2} + 8x + 12 = 0\).

Phương pháp giải - Xem chi tiết

Các bước giải phương trình:

+ Bước 1: Đưa phương trình về dạng: \(A.B = 0\).

+ Bước 2: Nếu \(A.B = 0\) thì \(A = 0\) hoặc \(B = 0\). Giải các phương trình đó và kết luận.

Lời giải chi tiết

a) \({x^2} + 5x = 0\)

\(x\left( {x + 5} \right) = 0\)

\(x = 0\) hoặc \(x + 5 = 0\)

\(x = 0\) hoặc \(x =  - 5\)

Vậy phương trình có hai nghiệm: \({x_1} = 0\); \(x =  - 5\).

b) \({x^2} - 16 = 0\)

\(\left( {x - 4} \right)\left( {x + 4} \right) = 0\)

\(x - 4 = 0\) hoặc \(x + 4 = 0\)

\(x = 4\) hoặc \(x =  - 4\)

Vậy phương trình có hai nghiệm: \(x = 4\); \(x =  - 4\).

c) \({x^2} - 10x + 25 = 0\)

\({x^2} - 2.x.5 + {5^2} = 0\)

\({\left( {x - 5} \right)^2} = 0\)

\(x - 5 = 0\)

\(x = 5\)

Vậy phương trình đã cho có nghiệm \(x = 5\).

d) \({x^2} + 8x + 12 = 0\)

\({x^2} + 2x + 6x + 12 = 0\)

\(x\left( {x + 2} \right) + 6\left( {x + 2} \right) = 0\)

\(\left( {x + 2} \right)\left( {x + 6} \right) = 0\)

\(x + 2 = 0\) hoặc \(x + 6 = 0\)

\(x =  - 2\) hoặc \(x =  - 6\)

Vậy phương trình có hai nghiệm: \(x =  - 2\); \(x =  - 6\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"