Giải bài 6.20 trang 13 sách bài tập toán 9 - Kết nối tri thức tập 2

2024-09-14 18:50:49

Đề bài

Cho phương trình bậc hai (ẩn x): \({x^2} - 4x + m - 2 = 0\).

a) Tìm điều kiện của ẩn m để phương trình có nghiệm.

b) Với các giá trị m tìm được ở câu a, gọi \({x_1}\) và \({x_2}\) là hai nghiệm của phương trình. Hãy tính giá trị của các biểu thức sau theo m: \(A = x_1^2 + x_2^2;B = x_1^3 + x_2^3\).

Phương pháp giải - Xem chi tiết

a) Phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) có nghiệm khi \(\Delta ' \ge 0\).

b) + Viết định lí Viète để tính \({x_1} + {x_2};{x_1}.{x_2}\).

+ Biến đổi \(x_1^2 + x_2^2 = \left( {x_1^2 + 2{x_1}{x_2} + x_2^2} \right) - 2{x_1}{x_2} = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2}\), từ đó tính được giá trị biểu thức.

+ Biến đổi \(B = x_1^3 + x_2^3 = {\left( {{x_1} + {x_2}} \right)^3} - 3{x_1}{x_2}\left( {{x_1} + {x_2}} \right)\), từ đó tính được giá trị biểu thức.

Lời giải chi tiết

a) Ta có: \(\Delta ' = {\left( { - 2} \right)^2} - 1.\left( {m - 2} \right) = 6 - m\).

Phương trình đã cho có nghiệm khi \(\Delta ' \ge 0\), tức là \(6 - m \ge 0\), suy ra \(m \le 6\).

b) Theo định lí Viète ta có \({x_1} + {x_2} = 4;{x_1}.{x_2} = m - 2\).

Ta có:

\(A = x_1^2 + x_2^2 = \left( {x_1^2 + 2{x_1}{x_2} + x_2^2} \right) - 2{x_1}{x_2}\\ = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2}.\)

Thay \({x_1} + {x_2} = 4;{x_1}.{x_2} = m - 2\) vào A ta có:

\(A = {4^2} - 2\left( {m - 2} \right) = 20 - 2m\).

\(B = x_1^3 + x_2^3 = {\left( {{x_1} + {x_2}} \right)^3} - 3{x_1}{x_2}\left( {{x_1} + {x_2}} \right)\)

Thay \({x_1} + {x_2} = 4;{x_1}.{x_2} = m - 2\) vào B ta có:

\(B = {4^3} - 3.\left( {m - 2} \right).4 = 88 - 12m\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"