Giải bài 6 trang 30 sách bài tập toán 9 - Chân trời sáng tạo tập 1

2024-09-14 18:52:03

Đề bài

Cho a, b, c, d là các số thực thoả mãn a > b và c > d.

a) Chứng minh: a + c > b + d.

b) a – c > b – d có luôn luôn đúng không? Nếu không, hãy cho ví dụ.

Phương pháp giải - Xem chi tiết

Dựa vào: Tính chất liên hệ giữa thứ tự và phép cộng: Cho ba số a, b, c. Nếu a > b thì a + c > b + c.

Các tính chất trên vẫn đúng với các bất đẳng thức có dấu <, \( \ge ,\)\( \le \).

Lời giải chi tiết

a) Cộng c và hai vế của a > b ta được a + c > b + c (1)

Cộng b vào hai vế của c > d ta được c + b > d + b  (2)

Từ (1) và (2) suy ra a + c > b + d.

b) a – c > b – d không phải luôn luôn đúng.

Ví dụ: Lấy a = 10, b = 9, c = 5, d = 1, ta có: 10 > 9 và 5 > 1.

Tuy nhiên 10 – 5 < 9 – 1.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"