Đề bài
Rút gọn các biểu thức (biết x > 0, y > 0):
a) \(2\left( {\sqrt x + \sqrt y } \right) - \frac{{x - y}}{{\sqrt x + \sqrt y }}\)
b) \(\frac{{x\sqrt x + y\sqrt y }}{{x - \sqrt {xy} + y}}\).
Phương pháp giải - Xem chi tiết
Dựa vào: \(\frac{{\sqrt a }}{{\sqrt b }} = \frac{{\sqrt a .\sqrt b }}{{{{\left( {\sqrt b } \right)}^2}}} = \frac{{\sqrt {ab} }}{b}(a \ge 0,b > 0)\)
\(\sqrt {\frac{a}{b}} = \sqrt {\frac{{ab}}{{{b^2}}}} = \frac{{\sqrt {ab} }}{b}(a \ge 0,b > 0)\)
Lời giải chi tiết
a) \(2\left( {\sqrt x + \sqrt y } \right) - \frac{{x - y}}{{\sqrt x + \sqrt y }} \)
\(= 2\left( {\sqrt x + \sqrt y } \right) - \frac{{{{\left( {\sqrt x } \right)}^2} + {{\left( {\sqrt y } \right)}^2}}}{{\sqrt x + \sqrt y }} \\ = 2\left( {\sqrt x + \sqrt y } \right) - \left( {\sqrt x - \sqrt y } \right) \\= \sqrt x + 3\sqrt y .\)
b) \(\frac{{x\sqrt x + y\sqrt y }}{{x - \sqrt {xy} + y}} \)
\(= \frac{{{{\left( {\sqrt x } \right)}^3} + {{\left( {\sqrt y } \right)}^3}}}{{x - \sqrt {xy} + y}} \\= \frac{{\left( {\sqrt x + \sqrt y } \right)\left( {x - \sqrt {xy} + y} \right)}}{{x - \sqrt {xy} + y}} \\= \sqrt x + \sqrt y .\)