Giải bài 8 trang 69 sách bài tập toán 9 - Chân trời sáng tạo tập 1

2024-09-14 18:52:30

Đề bài

Hai trụ điện cùng chiều cao được dựng thẳng đứng ở hai bên lề đối diện một đại lộ rộng 80 m (AC = 80 m). Từ một điểm M trên mặt đường giữa hai trụ người ta nhìn thấy đỉnh hai trụ điện với các góc nâng lần lượt là 60o và 30o. Tính chiều cao của trụ điện và khoảng cách từ điểm M đến gốc mỗi trụ điện.

Phương pháp giải - Xem chi tiết

Sử dụng tỉ số lượng giác trong tam giác vuông để tính.

Lời giải chi tiết

Xét tam giác ABM vuông tại A, ta có: \(\cot \widehat {AMB} = \frac{{AM}}{{AB}}\), suy ra AM = AB. \(\cot \widehat {AMB}\).

Xét tam giác CMD vuông tại C, ta có: \(\cot \widehat {CMB} = \frac{{CM}}{{CD}}\), suy ra CM = CD. \(\cot \widehat {CMB}\)

= AB. \(\cot \widehat {CMB}\).

Ta có AC = AM + CM

80 = AB. cot 60o + AB. cot 30o

80 = AB (cot 60o + cot 30o)

AB = \(\frac{{80}}{{\cot {{60}^o} + \cot {{30}^o}}} = 20\sqrt 3 \).

Khoảng cách từ điểm M đến trụ điện AB là:

\(AM = AB.\cot \widehat {AMB} = 20\sqrt 3 .\frac{{\sqrt 3 }}{3} = 20(m).\)

Khoảng cách từ điểm M đến trụ điện CD là:

MC = AC – AM = 80 – 20 = 60 (m).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"