Giải bài 1 trang 68 sách bài tập toán 9 - Chân trời sáng tạo tập 1

2024-09-14 18:52:35

Đề bài

Cho tam giác OAB vuông tại O. Tính các tỉ số lượng giác của góc A trong mỗi trường hợp sau:

a) AB = 7 cm, OB = 4 cm;

b) OA = 5 cm, OB = 9 cm;

c) AB = 11 cm, OB = 6 cm;

Phương pháp giải - Xem chi tiết

Dựa vào: Tam giác vuông ABC trong Hình 1, ta có:

\(\sin \alpha  = \frac{{AC}}{{BC}} = \frac{b}{a};\cos \alpha  = \frac{{AB}}{{BC}} = \frac{c}{a};\\\tan \alpha  = \frac{{AC}}{{AB}} = \frac{b}{c};\cot \alpha  = \frac{{AB}}{{AC}} = \frac{c}{b}.\)

Chú ý: Với góc nhọn \(\alpha \), ta có:

0 < sin \(\alpha \) < 1; 0 < cos \(\alpha \)< 1.

cot \(\alpha \) = \(\frac{1}{{\tan \alpha }}\)

Lời giải chi tiết

a) Áp dụng định lí Pythagore vào tam giác OAB vuông tại O, ta có:

\(OA^2 = AB^2 - OB^2 = 7^2 - 4^2 = 33\) suy ra \(OA = \sqrt {33}\)

Các tỉ số lượng giác của góc A là:

\(\sin A = \frac{{OB}}{{AB}} = \frac{4}{7};\cos A = \frac{{OA}}{{AB}} = \frac{{\sqrt {33} }}{7};\)

\(\tan A = \frac{{OB}}{{OA}} = \frac{9}{5};\cot A = \frac{{OA}}{{OB}} = \frac{{\sqrt {33} }}{4}.\)

b) Áp dụng định lí Pythagore vào tam giác OAB vuông tại O, ta có:

\(AB^2 = OA^2 + OB^2 = 5^2 - 9^2 = 106\) suy ra \(OA = \sqrt {106}\)

Các tỉ số lượng giác của góc A là:

\(\sin A = \frac{{OB}}{{AB}} = \frac{9}{{\sqrt {106} }};\cos A = \frac{{OA}}{{AB}} = \frac{5}{{\sqrt {106} }};\)

\(\tan A = \frac{{OB}}{{OA}} = \frac{9}{5};\cot A = \frac{{OA}}{{OB}} = \frac{5}{9}.\)

c) Áp dụng định lí Pythagore vào tam giác OAB vuông tại O, ta có:

\(OA^2 = AB^2 - OB^2 = 11^2 - 6^2 = 85\) suy ra \(OA = \sqrt {85}\)

Các tỉ số lượng giác của góc A là:

\(\sin A = \frac{{OB}}{{AB}} = \frac{6}{{11}};\cos A = \frac{{OA}}{{AB}} = \frac{{\sqrt {85} }}{{11}};\)

\(\tan A = \frac{{OB}}{{OA}} = \frac{6}{{\sqrt {85} }};\cot A = \frac{{OA}}{{OB}} = \frac{{\sqrt {85} }}{6}.\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"