Đề bài
Từ điểm P ở ngoài đường tròn (O; R) vẽ hai tiếp tuyến tiếp xúc với (O) tại A và B. Đoạn thẳng OP cắt (O) tại Q (Hình 10). Cho biết PB = 8, PQ = 4. Tính R và số đo \(\widehat {AOB}\).
Phương pháp giải - Xem chi tiết
Vận dụng tỉ số lượng giác của góc nhọn và hệ thức giữa cạnh và góc giúp giải tam giác vuông thuận lợi và nhanh chóng.
Lời giải chi tiết
Trong \(\Delta OPB\) vuông tại B, ta có OP2 = OB2 + PB2, suy ra (R + 4)2 = R2 + 82, suy ra R = 6.
OP2 = OB2 + PB2 suy ra (R + 4)2 = R2 + 82, suy ra R = 6.
\(\sin \widehat {BOP} = \frac{{PB}}{{OP}} = \frac{8}{{6 + 4}} = \frac{4}{5}\) suy ra \(\widehat {BOP} \approx {53^o}\).
Ta lại có \(\widehat {AOB} = 2\widehat {BOP} \approx {2.53^o} = {106^o}.\)