Đề bài
Cho phương trình 5x2 – 7x + 1 = 0. Gọi x1; x2 là hai nghiệm của phương trình. Không giải phương trình, hãy tính giá trị của các biểu thức sau:
\(A = \left( {{x_1} - \frac{7}{5}} \right){x_1} + \frac{1}{{25x_2^2}} + x_2^2\).
Phương pháp giải - Xem chi tiết
Dựa vào: Nếu phương trình bậc hai ax2 + bx + c = 0 (a\( \ne \)0) có nghiệm x1, x2 thì tổng và tích của hai nghiệm đó là:
\(S = {x_1} + {x_2} = - \frac{b}{a};P = {x_1}.{x_2} = \frac{c}{a}\)
Lời giải chi tiết
Theo định lí Viète, ta có:
\(S = {x_1} + {x_2} = - \frac{b}{a} = \frac{7}{5};P = {x_1}.{x_2} = \frac{c}{a} = \frac{1}{5}\).
Ta có
\(A =\left( {{x_1} - \frac{7}{5}} \right){x_1} + \frac{1}{{25x_2^2}} + x_2^2 \\= \left[ {{x_1} - \left( {{x_1} + {x_2}} \right)} \right]{x_1} + {\left( {\frac{1}{5}} \right)^2}.\frac{1}{{x_2^2}} + x_2^2\\ = - {x_1}{x_2} + {\left( {{x_1}{x_2}} \right)^2}.\frac{1}{{x_2^2}} + x_2^2 \\= - {x_1}{x_2} + x_1^2 + x_2^2 \\= {S^2} - 3P \\= \frac{{34}}{{25}}.\)