Giải bài 4 trang 16 sách bài tập toán 9 - Chân trời sáng tạo tập 2

2024-09-14 18:53:45

Đề bài

Cho phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) có \(\Delta  = {b^2} - 4ac = 0\). Khi đó, phương trình có hai nghiệm là

A. \({x_1} = {x_2} =  - \frac{b}{{2a}}\)

B. \({x_1} = {x_2} =  - \frac{b}{a}\)

C. \({x_1} = {x_2} = \frac{b}{{2a}}\)

D. \({x_1} = {x_2} = \frac{b}{a}\)

Phương pháp giải - Xem chi tiết

Dựa vào công thức nghiệm phương trình bậc hai:

Cho phương trình ax2 + bx + c = 0 (a \( \ne \)0) và biệt thức \(\Delta  = {b^2} - 4ac\).

Nếu \(\Delta \) = 0 thì phương trình có nghiệm kép \({x_1} = {x_2} = \frac{{ - b}}{{2a}}\).

Lời giải chi tiết

Theo công thức nghiệm phương trình bậc hai : Nếu \(\Delta \) = 0 thì phương trình có nghiệm kép \({x_1} = {x_2} = \frac{{ - b}}{{2a}}\).

Chọn đáp án A.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"