Giải bài 10 trang 37 sách bài tập toán 9 - Cánh diều tập 1

2024-09-14 18:54:32

Đề bài

Cho tứ giác ABCD. Chứng minh diện tích của tứ giác ABCD không lớn hơn \(\frac{{AB.BC + AD.DC}}{2}.\)

Phương pháp giải - Xem chi tiết

Kẻ đường cao CH  và AK.

Tính diện tích tam giác ABC và ACD.

 Do đó\({S_{ABCD}} = {S_{ABC}} + {S_{ACD}} = \frac{{AB.CH + DC.AK}}{2}\)

Kết hợp với điều kiện \(CH \le BC,AK \le AD\), ta được điều phải chứng minh.

Lời giải chi tiết

Kẻ \(CH \bot AB,AK \bot DC(H \in AB,K \in DC)\).

Ta có \({S_{ABC}} = \frac{{AB.CH}}{2},{S_{ACD}} = \frac{{DC.AK}}{2}\)

Do đó

\({S_{ABCD}} = {S_{ABC}} + {S_{ACD}} \\= \frac{{AB.CH}}{2} + \frac{{DC.AK}}{2} = \frac{{AB.CH + DC.AK}}{2}\)

Mà \(CH \le BC,AK \le AD\) suy ra \({S_{ABCD}} \le \frac{{AB.BC + AD.DC}}{2}\)

Vậy diện tích của tứ giác ABCD không lớn hơn \(\frac{{AB.BC + AD.DC}}{2}.\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"