Giải bài 4 trang 35 sách bài tập toán 9 - Cánh diều tập 1

2024-09-14 18:54:34

Đề bài

Cho \(a,b,c,d\) là các số không âm thỏa mãn \(a > c + d,b > c + d\). Chứng minh:

a) \(a + 2b > 3c + 3d\)

b) \({a^2} + {b^2} > 2{c^2} + 2cd + 2{d^2}\)

c) \(ab > {c^2} + cd + {d^2}\)

Phương pháp giải - Xem chi tiết

Thay a, b vào biểu thức bên vế trái kết hợp với giả thiết \(a > c + d,b > c + d\).

Lời giải chi tiết

Do \(a > c + d,b > c + d\) và \(a,b,c,d\) là các số không âm nên ta có:

a) \(a + 2b > \left( {c + d} \right) + 2\left( {c + d} \right)\) hay \(a + 2b > 3c + 3d\).

b)  \({a^2} + {b^2} > {\left( {c + d} \right)^2} + {\left( {c + d} \right)^2}\) hay \({a^2} + {b^2} > 2{c^2} + 4cd + {d^2}\) suy ra \({a^2} + {b^2} > 2{c^2} + 2cd + {d^2}\).

c) \(ab > \left( {c + d} \right)\left( {c + d} \right)\) hay \(ab > {c^2} + 2cd + {d^2}\)suy ra  \(ab > {c^2} + cd + {d^2}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

We using AI and power community to slove your question

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"