Giải bài 16 trang 42 sách bài tập toán 9 - Cánh diều tập 1

2024-09-14 18:54:36

Đề bài

Một xí nghiệp đã sản xuất hai loại hộp giấy có dạng hình hộp chữ nhật để đựng đồ ăn. Hộp giấy loại I có chiều rộng là x (cm), chiều dài hơn chiều rộng là 9 (cm) chiều cao là 18 (cm) và hộp giấy loại II có chiều rộng là 10 (cm), chiều dài hơn chiều rộng là 5 (cm), chiều cao là x + 1 (cm) với x > 0. Tổng diện tích xung quanh của 25 hộp giấy loại I hơn tổng diện tích xung quanh của 20 hộp giấy loại II không dưới 175 dm2. Tìm giá trị nhỏ nhất của x, biết rằng diện tích giấy dán mép hộp không đáng kể.

Phương pháp giải - Xem chi tiết

Bước 1: Tính tổng diện tích xung quanh của 25 hộp giấy loại I.

Bước 2: Tính tổng diện tích xung quanh của 20 hộp giấy loại II.

Bước 3: Lập và giải bất phương trình.

Lời giải chi tiết

Diện tích xung quanh của 25 hộp giấy loại I là:

\(25.2.\left( {x + x + 9} \right).18 = 900\left( {2x + 9} \right)\) cm2.

Diện tích xung quanh của 20 hộp giấy loại II là:

\(20.2.\left( {10 + 15} \right).\left( {x + 1} \right) = 1000\left( {x + 1} \right)\) cm2.

Vì tổng  diện tích xung quanh của 25 hộp giấy loại I hơn tổng diện tích xung quanh của 20 hộp giấy loại II không dưới 175 dm2  nên ta có bất phương trình:

\(\begin{array}{l}900\left( {2x + 9} \right) - 1000\left( {x + 1} \right) \ge 17500\\9\left( {2x + 9} \right) - 10\left( {x + 1} \right) \ge 175\\18x + 81 - 10x - 10 \ge 175\\8x \ge 104\\x \ge 13\end{array}\)

Vậy giá trị nhỏ nhất của x là 13.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"