Đề bài
Áp dụng quy tắc về căn bậc hai của một tích, hãy tính:
a) \(\sqrt {\frac{9}{{100}}.121} \)
b) \(\sqrt {17.51.27} \)
c) \(\sqrt {600} .\sqrt {{{11}^2} - {5^2}} \)
d) \(\sqrt {\sqrt 7 + 3} .\sqrt {3 - \sqrt 7 } \)
Phương pháp giải - Xem chi tiết
Áp dụng: Với 2 số a,b không âm, ta có: \(\sqrt {a.b} = \sqrt a .\sqrt b \)
Lời giải chi tiết
a) \(\sqrt {\frac{9}{{100}}.121} = \sqrt {\frac{9}{{100}}} .\sqrt {121} \)
\(= \sqrt {{{\left( {\frac{3}{{10}}} \right)}^2}} .\sqrt {{{11}^2}} = \frac{3}{{10}}.11 = \frac{{33}}{{11}}.\)
b) \(\sqrt {17.51.27} = \sqrt {17.17.3.9.3} = \sqrt {{{17}^2}{{.9}^2}} \)
\(= \sqrt {{{17}^2}} .\sqrt {{9^2}} = 17.9 = 153.\)
c) \(\sqrt {600} .\sqrt {{{11}^2} - {5^2}} \)
\(= \sqrt 6 .\sqrt {100} .\sqrt {\left( {11 - 5} \right)\left( {11 + 5} \right)} \\= \sqrt 6 .10.\sqrt {6.16} = \sqrt 6 .10.\sqrt 6 .\sqrt {16} \\ = \sqrt 6 .\sqrt 6 .10.4 = 6.40 = 240.\)
d) \(\sqrt {\sqrt 7 + 3} .\sqrt {3 - \sqrt 7 } \)
\(= \sqrt {\left( {\sqrt 7 + 3} \right)\left( {3 - \sqrt 7 } \right)} \\= \sqrt {{3^2} - {{\left( {\sqrt 7 } \right)}^2}} = \sqrt {9 - 7} = \sqrt 2 .\)