Giải bài 25 trang 61 sách bài tập toán 9 - Cánh diều tập 1

2024-09-14 18:54:51

Đề bài

Tìm điều kiện xác định của mỗi biểu thức:

a) \(\sqrt {x + 2024} \)

b) \(\sqrt {7x + 1} \)

c) \(\sqrt {\frac{1}{{{x^2}}}} \)

d) \(\sqrt {\frac{{{x^2} + 1}}{{1 - 2x}}} \)

e) \(\sqrt[3]{{{x^2} + 5}}\)

g) \(\sqrt[3]{{\frac{1}{{32 - x}}}}\)

h) \(\sqrt[3]{{\frac{4}{{x + 3}}}}\)

i) \(\sqrt[3]{{\frac{{2024}}{{{x^2} + 10}}}}\)

Phương pháp giải - Xem chi tiết

Điều kiện xác định của biểu thức: mẫu khác 0 và biểu thức dưới dấu căn bậc hai không âm.

Lời giải chi tiết

a) Điều kiện xác định: \(x + 2024 \ge 0\) hay \(x \ge  - 2024\).

b) Điều kiện xác định: \(7x + 1 \ge 0\) hay \(x \ge  - \frac{1}{7}\).

c) Điều kiện xác định: \(\frac{1}{{{x^2}}} \ge 0\) hay \(x \ne 0\).

d) Điều kiện xác định: \(\frac{{{x^2} + 1}}{{1 - 2x}} \ge 0\) và \(1 - 2x \ne 0\)

Ta có: \(\frac{{{x^2} + 1}}{{1 - 2x}} \ge 0\) suy ra \(1 - 2x > 0\) (do \({x^2} + 1 > 0\forall x \in R\)), nên \(x < \frac{1}{2}\)

    \(1 - 2x \ne 0\) hay \(x \ne \frac{1}{2}\).

e) \(\sqrt[3]{{{x^2} + 5}}\) xác định với mọi số thực \(x\) vì \({x^2} + 5\) xác định với mọi số thực \(x\).

g) Điều kiện xác định: \(32 - x \ne 0\) hay \(x \ne 32.\)

h) Điều kiện xác định: \(x + 3 \ne 0\) hay \(x \ne  - 3.\)

i) Điều kiện xác định: mọi số thực \(x\) vì \({x^2} + 10 \ne 0\) với mọi số thực \(x\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"