Đề bài
Trục căn thức ở mẫu:
a) \(\frac{{2 - \sqrt 5 }}{{\sqrt 5 }}\)
b) \(\frac{{\sqrt 2 + 1}}{{\sqrt 2 - 1}}\)
c) \(\frac{8}{{3\sqrt 5 + 3}}\)
d) \(\frac{1}{{\sqrt[3]{3} + \sqrt[3]{7}}}\)
Phương pháp giải - Xem chi tiết
Xét biểu thức chứa căn ở dưới mẫu để chọn nhân tử phù hợp làm mất căn (thường áp dụng hằng đẳng thức).
Lời giải chi tiết
a) \(\frac{{2 - \sqrt 5 }}{{\sqrt 5 }} = \frac{{\sqrt 5 \left( {2 - \sqrt 5 } \right)}}{{\sqrt 5 .\sqrt 5 }} = \frac{{\sqrt 5 \left( {2 - \sqrt 5 } \right)}}{5}\)
b) \(\frac{{\sqrt 2 + 1}}{{\sqrt 2 - 1}} = \frac{{{{\left( {\sqrt 2 + 1} \right)}^2}}}{{\left( {\sqrt 2 - 1} \right)\left( {\sqrt 2 + 1} \right)}} = {\left( {\sqrt 2 + 1} \right)^2}\)
c) \(\frac{8}{{3\sqrt 5 + 3}} = \frac{8}{{3\left( {\sqrt 5 + 1} \right)}}\)
\( = \frac{{8\left( {\sqrt 5 - 1} \right)}}{{3\left( {\sqrt 5 + 1} \right)\left( {\sqrt 5 - 1} \right)}} = \frac{{8\left( {\sqrt 5 - 1} \right)}}{{3\left( {5 - 1} \right)}} = \frac{{2\left( {\sqrt 5 - 1} \right)}}{3}\)
d) \(\frac{1}{{\sqrt[3]{3} + \sqrt[3]{7}}} = \frac{{{{\left( {\sqrt[3]{3}} \right)}^2} - \sqrt[3]{3}.\sqrt[3]{7} + {{\left( {\sqrt[3]{7}} \right)}^2}}}{{\left( {\sqrt[3]{3} + \sqrt[3]{7}} \right)\left[ {{{\left( {\sqrt[3]{3}} \right)}^2} - \sqrt[3]{3}.\sqrt[3]{7} + {{\left( {\sqrt[3]{7}} \right)}^2}} \right]}}\)
\( = \frac{{\sqrt[3]{{{3^2}}} - \sqrt[3]{{3.7}} + \sqrt[3]{{{7^2}}}}}{{{{\left( {\sqrt[3]{3}} \right)}^3} + {{\left( {\sqrt[3]{7}} \right)}^3}}} = \frac{{\sqrt[3]{9} - \sqrt[3]{{21}} + \sqrt[3]{{49}}}}{{10}}\)