Đề bài
Cho biểu thức \(A = \frac{{\sqrt x + 1}}{{\sqrt x - 1}} + \frac{{\sqrt x - 1}}{{\sqrt x + 1}} - \frac{{3\sqrt x + 1}}{{x - 1}}\) với \(x \ge 0,x \ne 1\)
a) Rút gọn biểu thức A.
b) Tìm giá trị của biểu thức A tại \(x = 121\).
c) Tìm giá trị của \(x\) để \(A = \frac{1}{2}\).
d) Tìm giá trị của \(x\) để \(A = \sqrt x - 1\).
Phương pháp giải - Xem chi tiết
a) Quy đồng mẫu thức các phân thức.
b) Thay \(x = 121\) vào biểu thức A đã rút gọn.
c) Để \(A = \frac{1}{2}\) thì \(\frac{{2\sqrt x - 1}}{{\sqrt x + 1}} = \frac{1}{2}\).
d) Để \(A = \sqrt x - 1\) thì \(\frac{{2\sqrt x - 1}}{{\sqrt x + 1}} = \sqrt x - 1\).
Lời giải chi tiết
a) \(A = \frac{{\sqrt x + 1}}{{\sqrt x - 1}} + \frac{{\sqrt x - 1}}{{\sqrt x + 1}} - \frac{{3\sqrt x + 1}}{{x - 1}}\)
\(\begin{array}{l} = \frac{{\left( {\sqrt x + 1} \right)\left( {\sqrt x + 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} + \frac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}} - \frac{{3\sqrt x + 1}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}\\ = \frac{{x + 2\sqrt x + 1 + x - 2\sqrt x + 1 - 3\sqrt x - 1}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\ = \frac{{2x - 3\sqrt x + 1}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\ = \frac{{\left( {\sqrt x - 1} \right)\left( {2\sqrt x - 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\ = \frac{{2\sqrt x - 1}}{{\sqrt x + 1}}\end{array}\)
Vậy \(A = \frac{{2\sqrt x - 1}}{{\sqrt x + 1}}\) với \(x \ge 0,x \ne 1\)
b) Thay \(x = 121\) (tmđk) vào A, ta được:
\(A = \frac{{2\sqrt x - 1}}{{\sqrt x + 1}} = \frac{{2\sqrt {121} - 1}}{{\sqrt {121} + 1}} = \frac{{2.11 - 1}}{{11 + 1}} = \frac{7}{4}\)
Vậy với \(x = 121\) thì \(A = \frac{7}{4}\).
c) Để \(A = \frac{1}{2}\) thì \(\frac{{2\sqrt x - 1}}{{\sqrt x + 1}} = \frac{1}{2}\).
Giải phương trình trên:
\(\begin{array}{l}\frac{{2\sqrt x - 1}}{{\sqrt x + 1}} = \frac{1}{2}\\2\left( {2\sqrt x - 1} \right) = \sqrt x + 1\\4\sqrt x - 2 = \sqrt x + 1\\3\sqrt x = 3\\\sqrt x = 1\\x = 1\end{array}\)
Ta thấy \(x = 1\) không thỏa mãn điều kiện. Vậy không có giá trị nào thỏa mãn đề bài.
d) Để \(A = \sqrt x - 1\) thì \(\frac{{2\sqrt x - 1}}{{\sqrt x + 1}} = \sqrt x - 1\)
Giải phương trình trên:
\(\begin{array}{l}\frac{{2\sqrt x - 1}}{{\sqrt x + 1}} = \sqrt x - 1\\2\sqrt x - 1 = \left( {\sqrt x + 1} \right)\left( {\sqrt x - 1\,} \right)\\2\sqrt x - 1 = x - 1\\x - 2\sqrt x = 0\\\sqrt x \left( {\sqrt x - 2} \right) = 0\end{array}\)
\(\sqrt x = 0\) hoặc \(\sqrt x - 2 = 0\)
\(x = 0\) hoặc \(x = 4\)
Ta thấy \(x = 0,x = 4\) thỏa mãn điều kiện. Vậy \(x = 0,x = 4\) là các giá trị cần tìm.