Đề bài
So sánh:
a) \(5\sqrt 5 \) và \(4\sqrt 3 \)
b) \(\sqrt {36 + 16} \) và \(\sqrt {36} + \sqrt {16} \)
c) \(\frac{1}{{\sqrt {60} }}\) và \(2\sqrt {\frac{1}{{15}}} \)
d) \(\sqrt 6 - \sqrt 2 \) và 1
Phương pháp giải - Xem chi tiết
a) Đưa hết các thừa số vào trong căn.
b) Tính kết quả từng hạng tử.
c) Đưa hết các thừa số vào trong căn.
d) Xét hiệu \({\left( {\sqrt 6 - \sqrt 2 } \right)^2} - 1\).
Lời giải chi tiết
a) Ta có: \(5\sqrt 5 = \sqrt {{5^2}.5} = \sqrt {125} \) và \(4\sqrt 3 = \sqrt {{4^2}.3} = \sqrt {48} \).
Do \(\sqrt {125} > \sqrt {48} \) nên \(5\sqrt 5 > 4\sqrt 3 \).
b) Ta có \(\sqrt {36 + 16} = \sqrt {52} \) và \(\sqrt {36} + \sqrt {16} = 6 + 4 = 10 = \sqrt {100} \)
Do \(\sqrt {52} < \sqrt {100} \) nên \(\sqrt {36 + 16} < \sqrt {36} + \sqrt {16} \).
c) Ta có \(\frac{1}{{\sqrt {60} }} = \sqrt {\frac{1}{{60}}} \) và \(2\sqrt {\frac{1}{{15}}} = \sqrt {{2^2}.\frac{1}{{15}}} = \sqrt {\frac{4}{{15}}} \)
Do \(\frac{1}{{60}} < \frac{4}{{15}}\) nên \(\sqrt {\frac{1}{{60}}} < \sqrt {\frac{4}{{15}}} \) hay \(\frac{1}{{\sqrt {60} }} < 2\sqrt {\frac{1}{{15}}} \).
d) Xét hiệu
\({\left( {\sqrt 6 - \sqrt 2 } \right)^2} - 1\\ = 6 - 2\sqrt {12} + 2 - 1\\ = 7 - 2\sqrt {12} \\ = \sqrt {49} - \sqrt {48} > 0\)
Suy ra \({\left( {\sqrt 6 - \sqrt 2 } \right)^2} > 1\) do đó \(\sqrt 6 - \sqrt 2 > 1\).