Giải bài 45 trang 68 sách bài tập toán 9 - Cánh diều tập 1

2024-09-14 18:54:55

Đề bài

So sánh:

a) \(5\sqrt 5 \) và \(4\sqrt 3 \)

b) \(\sqrt {36 + 16} \) và \(\sqrt {36}  + \sqrt {16} \)

c) \(\frac{1}{{\sqrt {60} }}\) và \(2\sqrt {\frac{1}{{15}}} \)

d) \(\sqrt 6  - \sqrt 2 \) và 1

Phương pháp giải - Xem chi tiết

a) Đưa hết các thừa số vào trong căn.

b) Tính kết quả từng hạng tử.

c) Đưa hết các thừa số vào trong căn.

d) Xét hiệu \({\left( {\sqrt 6  - \sqrt 2 } \right)^2} - 1\).

Lời giải chi tiết

a) Ta có: \(5\sqrt 5  = \sqrt {{5^2}.5}  = \sqrt {125} \) và \(4\sqrt 3  = \sqrt {{4^2}.3}  = \sqrt {48} \).

Do \(\sqrt {125}  > \sqrt {48} \) nên \(5\sqrt 5  > 4\sqrt 3 \).

b) Ta có \(\sqrt {36 + 16}  = \sqrt {52} \) và \(\sqrt {36}  + \sqrt {16}  = 6 + 4 = 10 = \sqrt {100} \)

Do \(\sqrt {52}  < \sqrt {100} \) nên \(\sqrt {36 + 16}  < \sqrt {36}  + \sqrt {16} \).

c) Ta có \(\frac{1}{{\sqrt {60} }} = \sqrt {\frac{1}{{60}}} \) và \(2\sqrt {\frac{1}{{15}}}  = \sqrt {{2^2}.\frac{1}{{15}}}  = \sqrt {\frac{4}{{15}}} \)

Do \(\frac{1}{{60}} < \frac{4}{{15}}\)  nên \(\sqrt {\frac{1}{{60}}}  < \sqrt {\frac{4}{{15}}} \) hay \(\frac{1}{{\sqrt {60} }} < 2\sqrt {\frac{1}{{15}}} \).

d) Xét hiệu

\({\left( {\sqrt 6  - \sqrt 2 } \right)^2} - 1\\ = 6 - 2\sqrt {12}  + 2 - 1\\ = 7 - 2\sqrt {12} \\ = \sqrt {49}  - \sqrt {48}  > 0\)

Suy ra \({\left( {\sqrt 6  - \sqrt 2 } \right)^2} > 1\) do đó \(\sqrt 6  - \sqrt 2  > 1\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"