Giải bài 16 trang 85 sách bài tập toán 9 - Cánh diều tập 1

2024-09-14 18:55:02

Đề bài

Hai khinh khí cầu được thả lên cùng độ cao là 350 m (ở hai vị trí A và B). Tại vị trí C trên mặt đất, người ta quan sát và đo được \(\widehat {ACH} = 40^\circ ,\widehat {ACB} = 10^\circ \) (Hình 15). Tính khoảng cách giữa hai khinh khí cầu (làm tròn kết quả đến hàng đơn vị của mét).

Phương pháp giải - Xem chi tiết

Bước 1: Áp dụng hệ thức lượng để tính CK, CH.

Bước 2: AB = KH = CH – CK.

Lời giải chi tiết

Xét tam giác vuông ACH ta có \(\tan \widehat {ACH} = \frac{{AH}}{{CH}}\) hay \(CH = \frac{{AH}}{{\tan \widehat {ACH}}} = \frac{{350}}{{\tan 40^\circ }}.\)

Ta có \(\widehat {BCK} = \widehat {BCA} + \widehat {ACH} = 10^\circ  + 40^\circ  = 50^\circ \)

Xét tam giác vuông BCK ta có \(\tan \widehat {BCK} = \frac{{BK}}{{CK}}\) hay \(CK = \frac{{BK}}{{\tan \widehat {BCK}}} = \frac{{350}}{{\tan 50^\circ }}.\)

\(KH = CH - CK = \frac{{350}}{{\tan 40^\circ }} - \frac{{350}}{{\tan 50^\circ }} \approx 123\)m.

Mà \(KH = AB\) nên \(AB \approx 123\)m.

Vậy khoảng cách giữa hai khinh khí cầu khoảng 123m.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"