Đề bài
Hai khinh khí cầu được thả lên cùng độ cao là 350 m (ở hai vị trí A và B). Tại vị trí C trên mặt đất, người ta quan sát và đo được \(\widehat {ACH} = 40^\circ ,\widehat {ACB} = 10^\circ \) (Hình 15). Tính khoảng cách giữa hai khinh khí cầu (làm tròn kết quả đến hàng đơn vị của mét).
Phương pháp giải - Xem chi tiết
Bước 1: Áp dụng hệ thức lượng để tính CK, CH.
Bước 2: AB = KH = CH – CK.
Lời giải chi tiết
Xét tam giác vuông ACH ta có \(\tan \widehat {ACH} = \frac{{AH}}{{CH}}\) hay \(CH = \frac{{AH}}{{\tan \widehat {ACH}}} = \frac{{350}}{{\tan 40^\circ }}.\)
Ta có \(\widehat {BCK} = \widehat {BCA} + \widehat {ACH} = 10^\circ + 40^\circ = 50^\circ \)
Xét tam giác vuông BCK ta có \(\tan \widehat {BCK} = \frac{{BK}}{{CK}}\) hay \(CK = \frac{{BK}}{{\tan \widehat {BCK}}} = \frac{{350}}{{\tan 50^\circ }}.\)
\(KH = CH - CK = \frac{{350}}{{\tan 40^\circ }} - \frac{{350}}{{\tan 50^\circ }} \approx 123\)m.
Mà \(KH = AB\) nên \(AB \approx 123\)m.
Vậy khoảng cách giữa hai khinh khí cầu khoảng 123m.