Giải bài 14 trang 85 sách bài tập toán 9 - Cánh diều tập 1

2024-09-14 18:55:04

Đề bài

Chứng minh diện tích tam giác đều cạnh a là \(\frac{{{a^2}\sqrt 3 }}{4}\).

Phương pháp giải - Xem chi tiết

Bước 1: Áp dụng tỉ số lượng giác trong tam giác vuông ABH để tính AH.

Bước 2: \({S_{ABC}} = \frac{1}{2}AH.BC\)

Lời giải chi tiết

Giả sử ta có tam giác ABC đều, cạnh a, đường cao AH.

Xét tam giác vuông ABH có \(\sin B = \frac{{AH}}{{AB}}\)

hay \(AH = AB.\sin B = a.\sin 60^\circ  = \frac{{a\sqrt 3 }}{2}\).

Diện tích tam giác ABC là:

\({S_{ABC}} = \frac{1}{2}AH.BC = \frac{1}{2}.\frac{{a\sqrt 3 }}{2}.a = \frac{{{a^2}\sqrt 3 }}{4}\)(đvdt)

Vậy diện tích tam giác đều cạnh a là \(\frac{{{a^2}\sqrt 3 }}{4}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"