Giải bài 27 trang 90 sách bài tập toán 9 - Cánh diều tập 1

2024-09-14 18:55:23

Đề bài

Cho tam giác PQR vuông tại R có đường cao RS và \(\widehat Q = \alpha \) (Hình 27). Ti số lượng giác \(\sin \alpha \) bằng:

A. \(\frac{{PR}}{{RS}}\)                                             

B. \(\frac{{PR}}{{QR}}\)

C. \(\frac{{PS}}{{RS}}\)

D. \(\frac{{RS}}{{QR}}\)

Phương pháp giải - Xem chi tiết

Dựa vào tỉ số lượng giác: \(\sin \alpha \) = cạnh đối / cạnh huyền.

Lời giải chi tiết

Do RS là đường cao của tam giác PRQ nên \(\widehat {RSQ} = 90^\circ \).

Xét tam giác RSQ vuông tại S, ta có: \(\sin Q = \sin \alpha  = \frac{{RS}}{{RQ}}\).

Đáp án D.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"