Giải bài 18 trang 107 sách bài tập toán 9 - Cánh diều tập 1

2024-09-14 18:55:32

Đề bài

Cho đường tròn (O; 4 cm) và đường thẳng d sao cho khoảng cách từ điểm O đến đường thẳng d là OH = 5 cm. Đường thẳng OH cắt đường tròn (O) tại A. Gọi B là trung điểm của đoạn thẳng OA. Trên đường thẳng d, lấy một điểm I (khác H), kẻ tiếp tuyến IC của đường tròn (O) với C là tiếp điểm (Hình 17). Chứng minh tam giác IBC cân tại I.

Phương pháp giải - Xem chi tiết

Bước 1: Chứng minh \(I{B^2} = I{H^2} + B{H^2} = I{H^2} + 9\).

Bước 2: Chứng minh \(I{C^2} = I{O^2} - C{O^2} = O{H^2} + I{H^2} - C{O^2} = I{H^2} + 9\)

Lời giải chi tiết

Kẻ OI.

Do B trung điểm của OA nên \(OB = BA = \frac{{OA}}{2} = \frac{4}{2} = 2\)cm.

Ta có \(HB = OH - OB = 5 - 2 = 3\)cm.

Xét tam giác vuông IBH có

\(I{B^2} = I{H^2} + B{H^2} = I{H^2} + 9\).

Xét tam giác vuông IOC có

\(I{C^2} = I{O^2} - C{O^2} = O{H^2} + I{H^2} - C{O^2} = {5^2} + I{H^2} - {4^2} = I{H^2} + 9\)

Suy ra \(I{B^2} = I{C^2}\left( { = I{H^2} + 9} \right)\), do đó \(IB = IC\), nên tam giác IBC cân tại B.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"