Giải bài 16 trang 106 sách bài tập toán 9 - Cánh diều tập 1

2024-09-14 18:55:34

Đề bài

Cho hình vuông ABCD. Trên đường chéo BD, lấy điểm H sao cho BH = AB. Qua điểm H kẻ đường thẳng vuông góc với BD cắt AD tại O.

a) So sánh OA, OH, HD.

b) Xác định vị trí tương đối của BD và đường tròn (O; OA).

Phương pháp giải - Xem chi tiết

a) Bước 1: Chứng minh \(\Delta OAB = \Delta OHB\) để suy ra \(OA = OH\)

Bước 2: Chứng minh tam giác ODH là tam giác vuông cân để suy ra \(OH = DH\).

b) Chỉ ra BD là tiếp tuyến của (O).

Lời giải chi tiết

a) Do ABCD là hình vuông nên \(\widehat {DAB} = \widehat {ADC} = 90^\circ \), và DB là tia phân giác của góc ADB nên \(\widehat {ADB} = 45^\circ \).

Xét tam giác OAB và tam giác OHB có:

\(\widehat {OAB} = \widehat {OHB} = 90^\circ \);

OB chung;

\(AB = BH\)

Suy ra \(\Delta OAB = \Delta OHB\) (cạnh huyền – cạnh góc vuông)

Do đó \(OA = OH\) (cặp cạnh tương ứng) (1)

Xét tam giác ODH vuông tại H có \(\widehat {ODH} = 45^\circ \) nên tam giác ODH là tam giác vuông cân tại H, do đó \(OH = DH\) (2)

Từ (1) và (2) ta có \(OA = OH = DH\).

b) Vì \(OA = OH\) và OH vuông góc với Bd tại H nên BD là tiếp tuyến của (O). Vậy BD tiếp xúc với (O;OA).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"