Giải bài 34 trang 116 sách bài tập toán 9 - Cánh diều tập 1

2024-09-14 18:55:44

Đề bài

Một chiếc cầu được thiết kế như một cung AB của đường tròn (O) với độ dài AB = 40m và chiều cao MK = 6m (Hình 35). Tính bán kính của đường tròn chứa cung AMB (làm tròn kết quả đến hàng phần mười của mét).

Phương pháp giải - Xem chi tiết

Bước 1: Chứng minh MN là đường trung trực của AB.

Bước 2: Chứng minh \(\Delta AKM\backsim \Delta NKB(g.g)\) để tính NK.

Bước 3: Tính \(MN = 2R = MK + NK\), từ đó suy ra R.

Lời giải chi tiết

Bài toán được minh họa như hình trên. Kẻ đường kính MN của (O;R), suy ra \(O \in MN\).

Ta có \(AK = KB,MK \bot AB\) nên MK là đường trung trực của AB.

Có \(OA = OB = R\) nên O thuộc đường trung trực của AB.

Suy ra MO hay MN là đường trung trực của AB.

Do K là trung điểm của AN nên \(AK = KB = \frac{{AB}}{2} = \frac{{40}}{2} = 20\)m.

Xét tam giác AKM và tam giác NKB ta có:

\(\widehat {AKM} = \widehat {BKN} = 90^\circ \)

\(\widehat {MAK} = \widehat {MNB}\) (góc nội tiếp cùng chắn cung MB của (O))

Suy ra \(\Delta AKM\backsim \Delta NKB(g.g)\), do đó \(\frac{{AK}}{{NK}} = \frac{{MK}}{{BK}}\), hay \(NK = \frac{{AK.BK}}{{MK}} = \frac{{20.20}}{6} = \frac{{200}}{3}\)m.

Ta có \(MN = 2R = MK + NK = 6 + \frac{{200}}{3} = \frac{{213}}{3}\)m, do đó \(OM = R = \frac{{213}}{3}:2 \approx 36,3\)m.

Vậy bán kính của đường tròn chứa cung AMB khoảng 36,3m.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"