Giải bài 40 trang 121 sách bài tập toán 9 - Cánh diều tập 1

2024-09-14 18:55:54

Đề bài

Cho tam giác ABE vuông cân tại A với AB = AE = 2a. Vẽ đường tròn tâm O đường kính AB và đường tròn tâm O’ đường kính AE. Gọi M là giao điểm khác A của hai đường tròn (O), (O’) (Hình 44). Tính theo a:

a) Độ dài cung AmM và cung AnM tương ứng của đường tròn (O) và (O’);

b) Diện tích của phần tô màu xám theo a.

Phương pháp giải - Xem chi tiết

a) Bước 1: Chứng minh AOMO’ là hình vuông để suy ra số đo cung AmM và AnM và độ dài bán kính 2 đường tròn.

Bước 2: Áp dụng công thức \(l = \frac{{\pi Rn}}{{180}}\)

b) Diện tích tô đậm cần tìm = diện tích tạo bởi cung AnM và dây AM + diện tích tạo bởi cung AmM và dây AM.

Trong đó:

Diện tích tạo bởi cung AnM và dây AM = diện tích quạt của (O’;R), cung AnM – diện tích tam giác O’AM.

Diện tích tạo bởi cung AmM và dây AM = diện tích quạt của (O;R), cung AmM – diện tích tam giác O’AM.

Lời giải chi tiết

a) Ta có \(O'A = O'E = O'M = \frac{{AE}}{2}\) (cùng bằng bán kính (O’)) và \(OA = OB = OM = \frac{{AB}}{2}\) (cùng bằng bán kính (O))

Mà AB = AE = 2a nên \(O'A = O'E = O'M = OA = OB = OM = a\)

Xét tứ giác AOMO’ có \(O'A = O'M = OA = OM\) và\(\widehat {O'AO} = 90^\circ \) nên AOMO’ là hình vuông. Suy ra \(\widehat {AO'M} = \widehat {AOM} = 90^\circ \).

Mà \(\widehat {AO'M}\) là góc ở tâm chắn cung AnB của (O’) và \(\widehat {AOM}\) là góc ở tâm chắn cung AmB của (O) nên sđ \(\overset\frown{AnB}\)= sđ \(\overset\frown{AmB}\) \( = 90^\circ \). Hơn nữa 2 đường tròn (O) và (O’) có cùng bán kính là a , do đó độ dài cung AmM và cung AnM tương ứng của đường tròn (O) và (O’) là

\(l = \frac{{\pi Rn}}{{180}} = \frac{{\pi .a.90}}{{180}} = \frac{{\pi a}}{2}\)

b) Diện tích quạt tròn của (O’;R), cung AnM có số đo \(90^\circ \) là:

\({S_1} = \frac{{\pi {R^2}n}}{{360}} = \frac{{\pi .{a^2}.90}}{{360}} = \frac{{\pi .{a^2}}}{4}\)

Diện tích tam giác O’AM là

\({S_2} = \frac{1}{2}O'A.O'M = \frac{1}{2}.a.a = \frac{{{a^2}}}{2}\).

Diện tích phần tô đậm được giới hạn bởi cung AnM và dây AM là:

\(S' = {S_1} - {S_2} = \frac{{\pi {a^2}}}{4} - \frac{{{a^2}}}{2} = \frac{{\left( {\pi  - 2} \right){a^2}}}{4}\)

Diện tích quạt tròn của (O;R), cung AmM có số đo \(90^\circ \) là:

\({S_1}' = \frac{{\pi {R^2}n}}{{360}} = \frac{{\pi .{a^2}.90}}{{360}} = \frac{{\pi .{a^2}}}{4}\)

Diện tích tam giác OAM là

\({S_2}' = \frac{1}{2}OA.OM = \frac{1}{2}.a.a = \frac{{{a^2}}}{2}\).

Diện tích phần tô đậm được giới hạn bởi cung AmM và dây AM là:

\(S = {S_1}' - {S_2}' = \frac{{\pi {a^2}}}{4} - \frac{{{a^2}}}{2} = \frac{{\left( {\pi  - 2} \right){a^2}}}{4}\)

Diện tích phần tô đậm cần tìm là:

\(S' + S = \frac{{\left( {\pi  - 2} \right){a^2}}}{4} + \frac{{\left( {\pi  - 2} \right){a^2}}}{4} = \frac{{\left( {\pi  - 2} \right){a^2}}}{2}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"