Giải bài 37 trang 120 sách bài tập toán 9 - Cánh diều tập 1

2024-09-14 18:55:56

Đề bài

Hoàn thành số liệu ở bảng sau (làm tròn kết quả đến hàng phần trăm của đơn vị đo đã cho nếu cần, lấy \(\pi  \approx 3,14\)):

Phương pháp giải - Xem chi tiết

Áp dụng các công thức:

Chu vi hình tròn: \(C = 2\pi R\);

Diện tích hình tròn: \(S = \pi {R^2}\);

Độ dài cung tròn có số đo n⁰: \(l = \frac{{\pi Rn}}{{180}}\);

Diện tích quạt tròn, cung có số đo n⁰: \({S_q} = \frac{{\pi {R^2}n}}{{360}}\).

Lời giải chi tiết

- Hàng ngang 1: \(S = \pi {R^2}\) hay \(12,56 = \pi {R^2}\), do đó \(R \approx 2\)cm.

Ta có \(l = \frac{{\pi Rn}}{{180}} = \frac{{\pi .2.135}}{{180}} \approx 4,71\)cm,  \({S_q} = \frac{{\pi {{.2}^2}.135}}{{360}} \approx 4,71\)cm2.

- Hàng ngang 2: \(C = 2\pi R = 2\pi .0,6 \approx 3,768\)cm và \(S = \pi {R^2} = \pi .0,{6^2} \approx 1,1304\)cm2

Ta có \(l = \frac{{\pi Rn}}{{180}}\) hay \(1,256 = \frac{{\pi .0,6.n}}{{180}}\) suy ra \(n \approx 120^\circ \), và \({S_q} = \frac{{\pi {R^2}n}}{{360}} = \frac{{\pi .0,{6^2}.120}}{{360}} \approx 0,3768\) cm2

- Hàng ngang 3: \(S = \pi {R^2}\) hay \(50,24 = \pi {R^2}\) do đó \(R \approx 4\)cm và \(C = 2\pi R = 2\pi .4 \approx 25,12\)cm.

Ta có \({S_q} = \frac{{\pi {R^2}n}}{{360}}\) hay \(6,28 = \frac{{\pi {{.4}^2}n}}{{360}}\), do đó \(n \approx 45^\circ \), và \(l = \frac{{\pi Rn}}{{180}} = \frac{{\pi .4.45}}{{180}} \approx 3,14\)cm.

- Hàng ngang 4: \(C = 2\pi R = 2\pi .3 \approx 18,84\)cm và \(S = \pi {R^2} = \pi {.3^2} \approx 28,26\) cm2.

Ta có \({S_q} = \frac{{\pi {R^2}n}}{{360}}\) hay \(0,942 = \frac{{\pi {{.3}^2}n}}{{360}}\) do đó \(n \approx 12^\circ \) và \(l = \frac{{\pi Rn}}{{180}} = \frac{{\pi .3.12}}{{180}} \approx 0,628\)cm.

Vậy ta có bảng kết quả sau:

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"