Giải bài 58 trang 125 sách bài tập toán 9 - Cánh diều tập 1

2024-09-14 18:55:58

Đề bài

Cho hình vành khuyên giới hạn bởi hai đường tròn (O; R), (O; r) với \(R + r = 1,2dm\), \(R > r\)và diện tích hình vành khuyên đó là 1,5072 dm2 (Hình 55). Tính R và r, \(\pi  \approx 3,14\).

Phương pháp giải - Xem chi tiết

Bước 1: Từ \(R + r = 1,2\) suy ra \(R = 1,2 - r\).

Bước 2: Thế \(R = 1,2 - r\) vào \(\pi \left( {{R^2} - {r^2}} \right) = 1,5072\) để tìm r, từ đó tính được R.

Lời giải chi tiết

Diện tích hình vành khuyên là 1,5072 dm2  nên ta có \(\pi \left( {{R^2} - {r^2}} \right) = 1,5072\) hay \(\left( {R - r} \right)\left( {R + r} \right) = \frac{{1,5072}}{\pi }\) (1)

Mà \(R + r = 1,2\) hay \(R = 1,2 - r\). Thế \(R = 1,2 - r\) vào (1) ta có:

\(\left( {1,2 - r - r} \right)\left( {1,2 - r + r} \right) = \frac{{1,5072}}{\pi }\) nên \(\left( {1,2 - 2r} \right).1,2 = \frac{{1,5072}}{\pi }\), do đó \(1,2 - 2r = \frac{{1,5072}}{{\pi .1,2}}\)

Suy ra \(r \approx 0,4\)dm và \(R = 1,2 - r \approx 1,2 - 0,4 = 0,8\)dm.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"