Giải bài 54 trang 124 sách bài tập toán 9 - Cánh diều tập 1

2024-09-14 18:56:00

Đề bài

Cho đường tròn (O; R) và ba điểm A, B, C nằm trên đường tròn với AB < AC. Gọi M là trung điểm của đoạn thẳng BC. Trên cung BC không chứa điểm A, lấy điểm D sao cho \(\widehat {BAD} = \widehat {CAM}\).

a) Chứng minh \(\widehat {ADB} = \widehat {CDM}\).

b) Gọi E là giao điểm của tia OM và cung BC. Tính diện tích hình quạt tròn giới hạn bởi các bán kính OE, OC và cung nhỏ CE theo R, biết \(BC = R\sqrt 2 \).

Phương pháp giải - Xem chi tiết

a) Bước 1: Chứng minh\(\widehat {BAM} = \widehat {DAC}\).

Bước 2: Chứng minh \(\frac{{AB}}{{AD}} = \frac{{CM}}{{CD}}\) (\(\Delta ABM\backsim \Delta ADC\)).

Bước 3: Chứng minh \(\widehat {ADB} = \widehat {CDM}\) (\(\Delta ABD\backsim \Delta CMD\)).

b) Bước 1: Chứng minh \(\Delta OBM = \Delta OCM\)để tính CM và suy ra \(\widehat {OMB} = \widehat {OMC}\).

Bước 2: Tính OM, chứng minh tam giác OCM vuông cân tại M.

Bước 3: Áp dụng công thức \(S = \frac{{\pi {R^2}n}}{{360}}\).

Lời giải chi tiết

a) Ta có \(\widehat {BAD} + \widehat {DAM} = \widehat {BAM},\widehat {DAM} + \widehat {CAM} = \widehat {DAC}\), mà \(\widehat {BAD} = \widehat {CAM}\)suy ra \(\widehat {BAM} = \widehat {DAC}\).

Ta lại có \(\widehat {ABM} = \widehat {ADC}\) (2 góc nội tiếp chắn cung AC của (O))

Xét tam giác ABM và tam giác ADC có:

\(\widehat {ABM} = \widehat {ADC}\), \(\widehat {BAM} = \widehat {DAC}\)

Suy ra \(\Delta ABM\backsim \Delta ADC\)(g.g), do đó \(\frac{{AB}}{{AD}} = \frac{{BM}}{{CD}} = \frac{{CM}}{{CD}}\).

Xét tam giác ABD và tam giác CMD có:

\(\widehat {BAD} = \widehat {MCD}\) (góc nội tiếp cùng chắn cung BD của (O))

\(\frac{{AB}}{{AD}} = \frac{{CM}}{{CD}}\)

Suy ra \(\Delta ABD\backsim \Delta CMD\)(c.g.c), do đó \(\widehat {ADB} = \widehat {CDM}\).

b) Xét tam giác OBM và tam giác OCM có:

OM chung

\(OB = OC\)(bằng bán kính (O))

\(MB = MC\)(M là trung điểm của BC)

Suy ra \(\Delta OBM = \Delta OCM\)(c.c.c), do đó \(CM = \frac{{BC}}{2} = \frac{{R\sqrt 2 }}{2}\) và \(\widehat {OMB} = \widehat {OMC}\)

Mà \(\widehat {OMB} + \widehat {OMC} = 180^\circ \), suy ra \(\widehat {OMB} = \widehat {OMC} = \frac{{180^\circ }}{2} = 90^\circ \)

Áp dụng định lý Pythagore trong tam giác vuông OCM có:

\(OM = \sqrt {O{C^2} - C{M^2}}  = \sqrt {{R^2} - {{\left( {\frac{{R\sqrt 2 }}{2}} \right)}^2}}  = \frac{{R\sqrt 2 }}{2}\)

Ta thấy \(OM = CM\left( { = \frac{{R\sqrt 2 }}{2}} \right)\) nên tam giác OCM vuông cân tại M, suy ra \(\widehat {COE} = 45^\circ \).

Diện tích hình quạt tròn giới hạn bởi các bán kính OE, OC và cung nhỏ CE là:

\(S = \frac{{\pi {R^2}.45}}{{360}} = \frac{{\pi {R^2}}}{8}\) (đvdt).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"