Giải bài tập 1.8 trang 14 SGK Toán 12 tập 1 - Kết nối tri thức

2024-09-14 19:24:20

Đề bài

Cho hàm số \(y = f\left( x \right) = \left| x \right|\).
a) Tính các giới hạn \(\mathop {\lim }\limits_{x \to {0^ + }} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}}\) và \(\mathop {\lim }\limits_{x \to {0^ - }} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}}\). Từ đó suy ra hàm số không có đạo hàm tại \(x = 0\).
b) Sử dụng định nghĩa, chứng minh hàm số có cực tiểu tại \(x = 0\). (Xem Hình 1.4)

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về cực trị hàm số để tìm cực tiểu của hàm số: Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên khoảng (a; b) (a có thể là \( - \infty \), b có thể là \( + \infty \)) và điểm \({x_0} \in \left( {a;b} \right)\). Nếu tồn tại số \(h > 0\) sao cho \(f\left( x \right) > f\left( {{x_0}} \right)\) với mọi \(x \in \left( {{x_0} - h;{x_0} + h} \right) \subset \left( {a;b} \right)\) và \(x \ne {x_0}\) thì ta nói hàm số f(x) đạt cực tiểu tại \({x_0}\).

Lời giải chi tiết

a) \(\mathop {\lim }\limits_{x \to {0^ + }} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\left| x \right| - 0}}{{x - 0}} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{x}{x} = 1\)

\(\mathop {\lim }\limits_{x \to {0^ - }} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{\left| x \right| - 0}}{{x - 0}} = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{ - x}}{x} =  - 1\)

Vì \(\mathop {\lim }\limits_{x \to {0^ + }} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} \ne \mathop {\lim }\limits_{x \to {0^ - }} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}}\) nên hàm số không có đạo hàm tại \(x = 0\).

b) Đồ thị hàm số \(y = f\left( x \right) = \left| x \right|\):

Ta có: \(y = f\left( x \right) = \left| x \right| = \left\{ \begin{array}{l} - x\;khi\;x \in \left( { - \infty ;0} \right)\\x\;\;\;khi\;x \in \left( {0; + \infty } \right)\end{array} \right.\)

Hàm số \(y = f\left( x \right) = \left| x \right|\) liên tục và xác định trên \(\left( { - \infty ; + \infty } \right)\)

Với số \(h > 0\) ta có: Với \(x \in \left( { - h;h} \right) \subset \left( { - \infty ; + \infty } \right)\) và \(x \ne 0\) thì \(y = f\left( x \right) = \left| x \right| > 0 = f\left( 0 \right)\)

Do đó, hàm số \(y = f\left( x \right) = \left| x \right|\) có cực tiểu là \(x = 0\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"