Giải bài tập 1.13 trang 19 SGK Toán 12 tập 1 - Kết nối tri thức

2024-09-14 19:25:12

Đề bài

Trong các hình chữ nhật có chu vi là 24cm, hãy tìm hình chữ nhật có diện tích lớn nhất.

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về cách tìm giá trị lớn nhất của hàm số trên một đoạn để tính: Giả sử \(y = f\left( x \right)\) là hàm số liên tục trên \(\left[ {a;b} \right]\) và có đạo hàm trên (a; b), có thể trừ ra tại một số hữu hạn điểm mà tại đó hàm số không có đạo hàm. Giả sử chỉ có hữu hạn điểm trong đoạn \(\left[ {a;b} \right]\) mà đạo hàm \(f'\left( x \right) = 0\).

Các bước tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \(\left[ {a;b} \right]\):

1. Tìm các điểm \({x_1},{x_2},...{x_n} \in \left( {a;b} \right)\), tại đó \(f'\left( x \right) = 0\) hoặc không tồn tại.

2. Tính \(f\left( {{x_1}} \right);f\left( {{x_2}} \right);...;f\left( {{x_n}} \right)\), f(a) và f(b).

3. Tìm số lớn nhất M và số nhỏ nhất m trong các số trên.

Ta có: \(M = \mathop {\max }\limits_{\left[ {a;b} \right]} f\left( x \right),m = \mathop {\min }\limits_{\left[ {a;b} \right]} f\left( x \right)\)

Lời giải chi tiết

Gọi chiều dài của hình chữ nhật là x (cm, \(0 < x < 12\))

Chiều rộng của hình chữ nhật là \(12 - x\left( {cm} \right)\)

Diện tích của hình chữ nhật là: \(x\left( {12 - x} \right) =  - {x^2} + 12x\;\left( {c{m^2}} \right)\)

Đặt \(S\left( x \right) =  - {x^2} + 12x,x \in \left( {0;12} \right)\)

\(S'\left( x \right) =  - 2x + 12,S'\left( x \right) = 0 \Leftrightarrow x = 6\left( {tm} \right)\)

Bảng biến thiên: 

Do đó, trong các hình có cùng chu vi thì hình chữ nhật có diện tích lớn nhất là \(36c{m^2}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"