Giải bài tập 1.37 trang 43 SGK Toán 12 tập 1 - Kết nối tri thức

2024-09-14 19:25:49

Đề bài

Cho hàm số \(y = f\left( x \right)\) xác định trên \[\mathbb{R}\backslash \left\{ {1;3} \right\}\], liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:


Khẳng định nào sau đây là sai?
A. Đường thẳng \(y = 1\) là tiệm cận ngang của đồ thị hàm số đã cho.
B. Đường thẳng \(y = - 1\) là tiệm cận ngang của đồ thị hàm số đã cho.
C. Đường thẳng \(x = 3\) là tiệm cận đứng của đồ thị hàm số đã cho.
D. Đường thẳng \(x = 1\) là tiệm cận đứng của đồ thị hàm số đã cho.

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về khái niệm tiệm cận ngang của đồ thị hàm số để tìm tiệm cận ngang: Đường thẳng \(y = {y_0}\) gọi là đường tiệm cận ngang (gọi tắt là tiệm cận ngang) của đồ thị hàm số \(y = f\left( x \right)\) nếu \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = {y_0}\).

Sử dụng kiến thức về khái niệm tiệm cận đứng của đồ thị hàm số để tìm tiệm cận đứng: Đường thẳng \(x = {x_0}\) gọi là đường tiệm cận đứng (gọi tắt là tiệm cận đứng) của đồ thị hàm số \(y = f\left( x \right)\) nếu ít nhất một trong các điều kiện sau được thỏa mãn: \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) =  + \infty \); \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) =  - \infty \); \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) =  - \infty \); \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) =  + \infty \)

Lời giải chi tiết

Vì \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) =  - 1;\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = 7\) nên đường thẳng \(x = 1\) không phải là tiệm cận đứng của đồ thị hàm số đã cho.

Chọn D

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

We using AI and power community to slove your question

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"